
Example R 

Study: The Divisors of Seventy-Two 

MUTABLE  NUMBER ANALYSIS

In the short Archive article Music By Mutable Numbers the argument is advanced that tonal music, stripped

down to a protean structure of nested harmonic series, forms essentially an implied sequence of values,

mutable base numbers, written in an acoustic physical notation which our ears intuitively understand as
commensurable harmony. In support of this contention – that chords in tonal music are in essence positional

numbers written in sound, (i.e. parts of harmonic series h1 through hn) – a demonstration ‘composition’ or

‘tonal procedure’ is presented below, which performs the overtly numerical task of finding the divisors of a

given whole number. In principle any given number. Judged on its merits, in purely musical terms, the piece

is trivial, consisting as it does of repetitive arpeggios and scale passages. However, this procedure does result

in a ‘composition’ of sorts which is both recognisably tonal music and recognisably practical mathematics.

(Essentially the same sequence of chords is ‘repackaged’ in a rather more palatable form in Ex_R2/pdf and

Ex_R2/MID so as to hopefully demonstrate that this really is tonal music.) The example given below seeks

out the divisors of seventy-two, though equally the procedure could be applied to any number that lies within

the range of musical instruments, and in theory could be applied to any positive whole number.

The procedure is also given below in the parallel form of a computer program. This program, as in

Chapter 3 of Journey to the Heart of Music is written in the almost readable prose of the BASIC

programming language (parallel versions in AWK and Perl can be found in the SCRPT.ZIP directory). All

these versions of the procedure/program require a digital electronic computer to function. That is, a physical

device capable of handling positional binary numbers by means of representing the digits zero and one as the

absence or presence of a defined level of electrical potential within the computer’s circuitry. Going back in

time to the nineteenth century, the mathematician Charles Babbage designed similar devices: the mechanical

difference and analytical engines. Though never finished in their own day, these were likewise physical

devices, but machines that used cog wheels and cylinders to represent the digits of positional decimal

numbers – with which we are all familiar. Theoretically, there is little to distinguish between the modern

computer and Babbage’s engines beside the technicalities of operation and of course a huge speed

differential. Interestingly, Ada Lovelace (the daughter of Lord Byron, who collaborated with Babbage on the

project, and is the author of the fullest account of the analytical engine’s true potential) suggested that among

other things the device might: “compose elaborate and scientific pieces of music”.



Similarly, in seeking to use positional mutable numbers as the basis of operation for computation, an

appropriate physical device is required, that is, a physical device specifically designed to match the particular

characteristics of its operational number system. For mutable numbers (–i.e. chords in tonal music) an

appropriate physical device is a musical instrument, though one might imagine far more powerful oscillatory

processors, with frequency ranges and sensitivities greatly in excess of that required for the pursuit of music.

However, the instruments we have and use to make music are entirely adequate for the demonstration of

tonal computation in sound.

 

First the mathematics. An underlying mechanism for finding the divisors of a given number is

described in Chapter 7, in the section on ‘bow waves’ in the Table of Harmonic Series – or Sieve of

Eratosthenes. (In regular mathematics I believe it is called the difference of squares.) There the formula

N = n2 − s2 was derived and described, for any odd number N. A slightly more complicated formula was

found for where N is an even number. However, a further development of the simpler odd-number

relationship, allows the inclusion of even numbers within a single algorithm. The best way of seeing how this

algorithm works is visually, by picturing the numbers as areas – as squares and rectangles. Figures R.1 and

R.2 illustrate this extension of the N = n2 − s2 relationship from odd to even numbers with examples. The

odd number N = 133 is examined and then the even number N = 82.
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49 + 42 + 42 = 133

169 – 36 = 133

Figure R.1 (13.17) Number = 133. By subtracting s2 from n2 the number N is deduced (i.e. 13 x 13 minus 6 x 6 = 133).
Looking at the squares of n and s, superimposed, reveals that N 133 (the grey area) is composed of another square,

plus two identical rectangles: 7 x 7 + 42 + 42 = 133 which may be combined into one rectangle 7 × 19. Therefore
divisors of N are 7 and 19 (i.e. 7 + (42 + 42)/7 ).
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Because the same ‘remainder’ relationship holds true for both odd and even numbers, with the two gray

leftover rectangles and one square (Figures R.1–2) necessarily taking integer values when whole numbers

divide N (despite n and s themselves not always being whole numbers), this characteristic allows a simple

algorithm to be devised: whenever a perfect whole numbered square (i.e. gray 2 × 2 square below), equal to

or less than the given number ‘N’, is subtracted from area N, leaving over two rectangular areas; then, two

whole numbered divisors of N will be: 1) the root of that perfect (gray) square, and 2) the sum of that root,

plus the area of the two rectangles divided by that root (i.e. the sum of the non-root sides of the rectangles).
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462.25 – 380.25 = 82

4 + 39 + 39 = 82

Figure R.2 (13.18) Number = 82. The same relationship as illustrated in Figure 13.17, holds true for even numbers
too, in spite of n and s being fractional: 21.5 x 21.5 minus 19.5 x 19.5 equals 82. The imposition of s2 upon n2 again

reveals another square and two identical rectangles: 2 x 2 + 39 + 39 = 82 which translates into the rectangle shown in
Figure R.3 (13.19). Therefore divisors are 2 and 41 = 2 + (39 + 39)/2.
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<----------------------------- s = 19.5 --------------------------><- 2 -><----------------------------- s = 19.5 -------------------------->

Figure R.3 (13.19) Rotating one leftover rectangle perhaps makes things clearer: area N = 82 = 2 x (19.5 + 2 + 19.5)

Thus when presented with any number ‘N’ for which one wishes to find the divisors, first calculate the

largest perfect square equal to or less than N and then proceed in whole numbered steps downward from this

square, testing each descending square in turn against the algorithm. Whenever the procedure produces an

integer result for the ‘leftover’ rectangles, two divisors of N have been found. Essentially, the algorithm

anchors the largest (gray) perfect square that will fit within ‘area N’, in N’s bottom right corner, and

sequentially compresses this (gray) square, in whole number steps, to one.
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In the BASIC programming language (BBC Basic V) this procedure could be written out as three steps:

First, acquire the number to be divided; second, find the largest perfect square that is less than or equal to it;

and third, check each perfect square from this largest square down to the unit square in integer steps for

leftover rectangles with whole number areas. Whenever the result meets this criterion, print out the whole

numbered divisors found.

  REMARK delineate number, for example 72.
  PRINT "Please specify whole number to be divided"'
  INPUT note_number
  REMARK Loop 1. find largest perfect square equal to or less than note_number.
  sqrt = 0
  REPEAT
    sqrt = sqrt + 1
    square = sqrt * sqrt
  UNTIL square >= note_number
  IF square > note_number THEN sqrt = sqrt - 1
  REMARK Loop 2. work down from value of sqrt to 1 in whole steps.
  WHILE sqrt >= 1
    square = sqrt * sqrt
    difference = note_number - square
    result = difference / sqrt
    REM test if result is a whole number.
    IF result = INT(result) THEN
      divisor_1 = sqrt
      divisor_2 = sqrt + result
      PRINT "Divisors: "; divisor_1; " x "; divisor_2
    ENDIF
    sqrt = sqrt - 1
  ENDWHILE
  END

Applying the selfsame procedure as given in the above BASIC program, but using mutable base

numbers operating upon the ‘physical devices’ that we call musical instruments (and writing out the progress

through each loop exhaustively), produces the following score for the input number seventy-two. The score

requires microtonal notes to be played in the upper part (violin), indicated by small arrows above the notes

where one staff note covers a range of two or four frequencies. For example, the written top C may stand for

four frequency inflections – h64, h65, h66 and h67 – of a notional root or fundamental frequency: h1.
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Violin

Piano

An Explicit Demonstration of Tonal Computation in Mutable Base Numbers

Tempo ad lib.

C-h1 fundamental tone

REMARK delineate number, for example: C-h1 through D-h72

h1 h4
h8

h12

h16

[Where more than one harmonic of the fundamental tone C-h1 is represented by a single note,

The arrow symbol indicates roughly an eighth-tone, quarter-tone or three eighth-tones as appropriate.]  

h20 h24 h28 h32 h36 h40 h44 h48

· ·

h52 h56 h60 h64 h68

D-h72 number to be divided

h72

e.g. Fh22 and Fh23 above, arrows (    )  are used to distinguish between them.
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41

54

(Loop 1.1)

REMARK Loop 1. Find largest square number equal to or less than D-h72

1 squared

1 < 72

(Loop 1.2)

2 squared

4 < 72

(Loop 1.3)

3 squared

9 < 72
(Loop 1.4)

4 squared

16 < 72

(Loop 1.5)

5 squared

25 < 72

(Loop 1.6)

6 squared

36 < 72

(Loop 1.7)

7 squared

49 < 72

(Loop 1.8)

8 squared
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66

79

88

64 < 72

(Loop 1.9)

9 squared

81 > 72

9 squared, E-h81 is greater than D-h72

81 > 72

therefore 8 squared is largest
square number equal to or
less than D-h72

64 < 72 64 < 72
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109

122

REMARK Loop 2. Check each square number in descending order from C-h64
for the concordance which signals whole number divisors.

(Loop 2.1)

C-h8 squared = C-h64

D-h72 minus C-h64 = 8 harmonics

By removing the bottom tier harmonic series division is achieved,
here division by eight leaves C-h1 of the second tier nested series.

C-h8 divided by C-h8 = 1, therefore (8+1) multiplied by 8 = 72

C-h1

Equality
(Loop 2.2)

A h7 squared = Gh49

h72

D-h72 minus Gh49 = 23 harmonics

h68 h64 h60 h56 h52 h50

* Repeat ad lib. with crescendo and allargando.

–i.e. Decimal  8 ÷ 8 = 1

MBN 1801 ÷ 1801 = 11
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F#h23 divided by A#h7 = non-integer value between 3 and 4, therefore no divisors

A#h4
 F-h3

Inequality
*

F#h3.285...

u

[

(Loop 2.3)

G-h6 squared = D-h36

u

h72

D-h72 minus D-h36 = 36 harmonics´ ´ ´
h68

´ ´ ´
h64

´ ´ ´ß

h60

* Repeat ad lib. with crescendo and allargando.

´ ´ ´
h56

´ ´ ´
h52

´ ´
h48

´ ´ ´
h44

´ ´
h40

´ ´
h36

(ß)

MBN (3701 + 21) ÷ 1701 = 31 7  (i.e. 21 × 01 7 = 01 7)2 1 2

Decimal  ( 21 + 2 )   ÷   7   =  3.285714286...
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173

183

D-h36 divided by G-h6 = 6, therefore (6+6) multiplied by 6 =72

D-h6

Equality

E-h5 squared = G

(Loop 2.4) h72

D-h72 minus Gh25 = 47 harmonics

h68 h64 h60 h56

h52

* Repeat ad lib. with crescendo and allargando.

h48 h44 h40 h36 h32 h28 h25

MBN 6601 ÷ 1601 = 61
Decimal  36   ÷   6   =  6

EXAMPLE R – THE DIVISORS OF SEVENTY-TWO 10



191

204

214

G-h47 divided by E-h5 = non-integer value between 9 and 10, therefore no whole number divisors

G h10
 F h9

Inequality

G-h9.4

(Loop 2.5)

C-h4 squared = C-h16

h72

D-h72 minus C-h16 = 56 harmonics

h68 h64 h60 h56

h52

* Repeat ad lib. with crescendo and allargando.

h48 h44 h40 h36 h32 h28 h24

Decimal  ( 45 + 2 ) ÷ 5  =  9.4

MBN (9501 + 21) ÷ 1501 = 9125  (i.e. 21 × 0115 = 0125)
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234

244

A h56 divided by C-h4 = 14, therefore (14+4) multiplied by 4 = 72

A h14

Equality

(Loop 2.6)

G-h3 squared = D-h9

h72

D-h72 minus D-h9 = 63 harmonics

h68 h64 h60

h56

* Repeat ad lib. with crescendo and allargando.

h52 h48 h44 h40 h36 h32 h28

MBN 14401 ÷ 1401 = 141
Decimal  56   ÷   4    =  14
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262

273

h24 h20 h16 h12 h9

C-h63 divided by G-h3 = 21, therefore (21+3) multiplied by 3 = 72

Equality

C-h21

C-h2 squared = C-h4

(Loop 2.7) h72

D-h72 minus C-h4 = 68 harmonics

h68 h64

* Repeat ad lib. with crescendo and allargando.

h60 h56 h52 h48

MBN 21301 ÷ 1301 = 211
Decimal  63   ÷   3    =  21
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290

302

h44 h40 h36 h32 h28 h24 h20 h16

h12 h8

h4

* Repeat ad lib. with crescendo and allargando.

h68 divided by C-h2 = 34, therefore (34+2) multiplied by 2 = 72

Equality

MBN 34201 ÷ 1201 = 341
Decimal  68   ÷   2    =  34
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C-h1 squared = C-h1

(Loop 2.8)h72 h68 h64

D-h72 minus C-h1 = 71 harmonics

h60 h56 h52 h48 h44

h40 h36 h32 h28 h24 h20 h16 h12

h8

h4

h1

[
h1 h2

h1

h4 h6

h8 h10 h12 h14
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355

364

(accel. poco e poco)

h16 h18 h20 h22 h24 h26 h28 h30 h32 h34 h36 h38 h40

h42 h44 h48 h50 h52 h56

D-h71 divided by C-h1 = 71, therefore (71+1) multiplied by 1 = 72

C h71

Equality

(allargando)

h60 h64 h68 h71

of a tone may be obtained by retuning down the unused D above.) 
* Repeat ad lib. with crescendo and allargando. (The piano note C plus three eighths
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