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Appendix B

FRACTIONAL  MUTABLE  NUMBERS
Thus far mutable numbers have been introduced and developed for the representation of positive whole

numbers, and the positive integers are basically all that are required for harmonic analysis. This is because

the ear and processes of aural cognition ‘read’ chords from bottom to top, as (parts of) ascending

harmonic series. Even when the information contained within the ascending frequency relationships of a

simple common major chord is inverted – as in the process of reflection – the ear still reads the

information from bottom to top and so recovers the configuration of a minor chord rather than that of an

inverted major chord. For this reason: that the ear always reads harmonic relationships in an upward

direction, and that ascending series represent positive whole mutable base numbers, only these digit

sequences are directly relevant to the harmonic analysis of tonal compositions.

However, as mutable numbers can easily and naturally be extended to cover fractional values; and

perhaps also because they could be of some utility in dealing with minor chords (Chapter 14), plus

encapsulating Arthur von Oettingen’s conception of phonics (notes sharing a common overtone e.g. the

minor triad E-h10, G-h12 and B-h15 share the overtone B-h60 – Chapter 11), they are briefly introduced

here.

In positional number systems fractional values lying between one and zero, are represented as

implicit ratios. For example, in the decimal number system, one-half – one divided by two, the proportion

of unity measured by the ratio 1:2 – is represented as 0.5 that is five divided by the column base which is

ten in decimal, 5/10. Expressed in the generalised positional notation decimal 0.5 would be written: 01.510

and this clearly exposes the implicit ratio 5:10 which reduces to 1:2 or 1/2, one-half. Indeed in

mathematical terminology, numbers terminating in ‘clean’ digit patterns, such as decimal 0.5 or decimal

0.333... or decimal 0.090909... are referred to as rational numbers, numbers formed from ratios. In

practice the representation of fractional values is normally limited to decimal numbers and we use the

term decimal point ‘·’ which might more rightly be described as the ‘fractional point’. It is perfectly

possible to represent factional values in other fixed base systems like binary (base two) or hexadecimal

(base sixteen) but generally there appears to be little need to do so.

Another example: one-quarter, decimal 0.25. Here the general notation would be 01.210 510 yielding

the ratio 25:100 or the fraction 25/100, which reduces to 1/4, one-quarter. Thus, with the column bases

now dividing the column digits (rather than multiplying them as on the whole number side of the decimal/

fractional point), we have two tenths plus five hundredths:

2/10 + 5/(10x10)  =  20/100 + 5/100  =  25/100  =  1/4



 All fixed-base positional systems have difficulty in expressing some simple fractions – this is

essentially a feature deriving from the trade-off in having the convenience of a fixed base. A fixed base

positional system is easier to use in many respects but the straight-jacket of only having a single base

introduces some inflexibility. And because the common fixed base systems use even bases – two, eight,

ten and sixteen – they all struggle to express the simple fraction of one-third. For the decimal one-third we

write 0.333... a sequence of digits followed by three dots to indicate an indefinite extension of the digits.

Three divided into one wont go; three divided into ten-tenth goes three time plus one (tenth) remainder,

which is where the statement started but one column to the right, so we must repeat the procedure..., add

infinitum. The process produces an unending, predictable sequence. If one asks: What is the ninety-ninth

digit? The answer is of course three, there is no need to actually calculate the ninety-nine digits to find

out. Notwithstanding this certainty, it is something of a humiliation to have to admit that decimal numbers

cannot express the simple magnitude of a third, precisely. However, mutable numbers don’t suffer from

the inflexibility of fixed base systems and cope with all fractions equally well. Again using the

generalised notation:

Decimal: 01.310 310 310 ... becomes the tidy MBN: 01.13   without an extension.

Most of the theoretically unlimited range of values extending between one and zero, behave like

one-third, that is, have indefinite extensions, but crucially the majority of the extensions are not

predictable. Mathematicians call these awkward numbers irrational, ‘not ratios’, perhaps the most famous

one probably being pi, the relationship between the diameter and circumference of a circle –

3.1415926535... The ten decimal places gives some flavor of the apparently random sequence of digits,

which continues on and on. To date the extension has been calculated to many billions of digits without

any pattern emerging to indicate a ratio could be extracted from it. Ultimately, numbers with indefinitely

extended digit sequences are written as approximations to an actual value, a value which cannot be

expressed exactly in the number system being use. For simple ratios like one-third (decimal 0.333...),

changing to a numbers system with an appropriate base allows the value to written down precisely. For

example in a base six number system one-third is written: 0.2 or explicitly 01.26 (using decimal

subscripts) – but fixed base systems will always struggle with some factions. Using a base six system to

get around the difficulty of 0.333... only transfers the problem to other numbers, e.g. one-fifth, tidy

decimal 0.2, becomes 01.161616... However, for the awkward irrational numbers there is no simple fix at

all. Even with the flexibility of mutable numbers, pi has no precise expression – and is not a particularly

pretty sight either:
MBN 31.14159...100000...

The best that can be managed for irrational values is to write down an exact rational value which is

arbitrarily close to the inexpressible irrational magnitude. Thus for pi 3.1415926535... in decimal, we

write down the exact rational number three, plus the fraction 1415926535 divided by 10000000000, as an

approximation to pi, and append three dots ‘...’ to indicate this is not exactly the value. By adding more

digits to the fraction a closer approximation may be obtained but the precise value can never be reached.

Now the question arises (again) what meaning is to be attached to numbers, which even in principle,

cannot be expressed exactly. For ‘abstract’ mathematics this is not such a great problem as the exact

irrational value can be postulated to exist amongst an infinitude of other values along the smooth

extrapolation of the number line; and a symbol – in this example the Greek letter pi – can used to denote
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the exact magnitude. But for a physical number system, in a finite context, these irrational numbers

cannot be reached, they are inexpressible. Yet on the other hand, in the physical world, there exists circles

and radii which exhibit such awkward relationships. This same conundrum faced the Pythagoreans of

ancient times, when they discovered the relationship between the diagonal and the sides of a unit square

were linked by a similarly irrational relationship – the square root of two: A relationship in music which

produces the restless and awkward sounding equal-tempered tritone (C-F# 1:1.414, see file SCALES.PDF

in EXTRAS). Perplexing and unresolved, such issues perhaps suggest that geometry might be less

fundamental than the arithmetic of whole number relationships: That spatial relationships in the material

world in some way partake of the freedom of software – a freedom that emerges from the grainy hardware

of whole numbers – or of course, that there are “more things in heaven and earth”, than dreamt of in this

chunky philosophy.

In the previous paragraphs of this section you will have already met a few fractional mutable

numbers, so it is probably high time they were formally introduced. Fractional values in mutable

numbers, are represented as digit sequences beginning with a leading zero (01) and continuing with

further columns (to the right of a ‘fractional point’) containing zeros and bases, finally terminating with a

column digit greater than zero. This is basically the reverse of whole mutable numbers. It may be helpful

to associate the base ‘1’ of the leading zero (01) in the units column, with the fractional point. The

fractional point has been include in examples but is not absolutely necessary. A number of simple

examples are given in Figures B.1 and B.2.

Number Decimal Mutable  Harmonics (frequency) Ratios
One-half Dec:  0.5 MBN 01.12   h2, h1 1:2
One-quarter Dec:  0.25 MBN 01.14   h12, 6, 4, h3 3:12
One-third Dec:  0.33... MBN 01.13   h6, 3, h2 2:6
Three-fifths Dec:  0.6 MBN 01.35   h60, 30, 20, 15, h12, 24, h36 36:60
Five-eighths Dec:  0.625 MBN 01.02 02 52  h8, 4, 2, h1, 2, 3, 4, h5 5:8
Five-quarters Dec:  1.25 MBN 01.54   h12, 6, 4, h3, 6, 9, 12, h15 15:12

Figure B.1 Example fractional values in decimal and mutable numbers, given with harmonic relationships and the
ratios between first and terminating frequencies. The harmonics are set at the lowest level which allows all the

relationships to be expressed in whole numbers. The bases come first as descending wavelength series
terminating with the underlined ratio, from where the final digit counts upward in the form of a normal harmonic

series. So in the harmonics column the left (first) entry represents the unit value ‘MBN 01’ in each case.

As you would probably by now expect with mutable numbers, there are a range of alternative digit

sequences for many of the fractional values – Figure B.2.

Number Decimal Mutable Harmonics (frequency) Ratios
One-half Dec:  0.5 MBN: 01.24 h12, 6, 4, h3, h6 6:12
One-quarter Dec:  0.25 MBN: 01.02 12 h12, 6, h3 3:12
Five-eighths Dec:  0.625 MBN: 01.58 h840, to h105, to h525 525:840
One + quarter Dec:  1.25 MBN: 11.02 12 h4, h2, h1 + h4 (1+4):4

Figure B.2 A few alternative mutable base digit sequences for the values expressed in Figure B.1. Illustrated by the
last example in each table, mutable numbers can distinguish five quarters (5/4) from one and one-quarter (1.25). 

Taking the fractional mutable numbers apart: First comes the empty unit column ‘01’ to set a

reference fundamental frequency a notional ‘H1’ for the number. Next, after the optional fractional point,
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are zero or more columns containing zero digits and their bases. Finally terminating the sequence, the last

(and perhaps only) column contains a digit one or greater and again a base subscript. Essentially, the

sequence of fractional column base(s) is relocating the reference fundamental frequency step by step

down a wavelength series or sequence of nested wavelength series. For example using the ‘arithmonic’

notation: a1(h840), a2(h420), a3(h280), a4(h210), a5(h168), a6(h140), a7(120), a8(h105). Here the

original reference fundamental – h840 – which represents unity ‘01’, the number one, has been transferred

down to h105. A process similar to moving the decimal point around, as in floating point arithmetic. On

its new starting frequency, h105 in this example, the final column digit constructs an ascending harmonic

series: h105, h210, h315, h420, h525. The ratio of the final frequency to the original reference frequency,

the beginning and end points, yields the fractional value 525 divided by 840 or five-eighths: MBN 01.58

the third example in Figure B.2.

Where there is more than one column to the right of the fractional point, the downward stepping

wavelength series has a nested structure. For example, in the fraction five-eighths as represented in Figure

B.1, the sequence of base two columns efficiently transfers the reference fundamental from h8 to h1 by

three octave steps, before the final digit produces the ascending series h1 through h5. I’m not sure if it

makes sense to talk in terms of ground states for fractions, but if it does then this configuration is five-

eighths’ most economical arrangement: its ground state. Mutable fractions display other interesting

features, one of which is to explicitly represent values greater than one, as either fractions or as integers

plus fractions, as in the examples of five-quarters in Figure B.1 and one and one-quarter in Figure B.2.

It is a natural step, now that we have mutable digit sequences capable of representing both whole

numbers and fractions, to join the two expressions together to form rational values lying between the

integers above one. As indeed the last example in Figure B.2 does, here are some more:

Decimal Mutable Harmonics (frequency) Ratios
Dec:  2.5 MBN: 21.12 h2, h1 + h2, 4 (1+4):2
Dec:  8.25 MBN: 22 02 01.02 12 h4, h2, h1 + h4, h8, h16, h32 (1+32):4
Dec:  8.25 MBN: 42 01.14 h12, 6, 4, h3 + h12, h24, 48, 72, 96 (3+96):12
Dec:  40.33... MBN: 22 02 05 01.13 h6, 3, h2 + h6, 12, 18, 24, h30, h60, h120, 240 (2+240):6
Dec:  15.6 MBN: 53 01.35 h60, to h12, 24, h36 + h60, to h180, to 900 (36+900):60

Figure B.3 Fractional mutable base numbers greater than one, with harmonic relationships, first, descending
(fractional part); and after the plus sign, ascending (whole number part); plus the ratios of unity they represent. 

Four closing notes: Firstly, the representation of alternative fractional digit sequences is not quite as

straightforward as for whole numbers where the leading digit and base subscripts are entirely

interchangeable. Take for example three-fifths and fifteen. Here swapping digit and base subscript works

fine for the whole number alternatives MBN 35 01 = 53 01 equals fifteen, but performing the same trick on

three-fifths, MBN 01.35 yields the fraction five-thirds MBN 01.53 not the same thing at all. Alternative

fractional digit sequences are available from among the column bases and separately in the factors of the

terminating digit should there be more than one. It just requires a little more care, whereas multiplication

is commutative, division is not, the order of bases and digits matters in fractional digit sequences. When

splitting a final digit into factors brackets help to make clear the meaning, for example, ten-elevenths

which is decimal 0.909090... or mutable MBN 01.1011 – could be expressed as MBN 01.(52)11 giving a

nested configuration to the digit.

Secondly, the representation of irrational values in the form of mutable numbers should perhaps
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normally be avoided, as to do so breaks the connection between physical oscillatory configurations and

mutable digit sequences. In principle at least, a mutable number can always be interpreted as a dynamical

system of oscillatory relationships – chords in music and perhaps of structures in the world. Although a

notation for irrational values comes to hand readily, for example, the rather rough approximation of

decimal 3.14...

pi by a few alternative digit sequences: MBN 31.14...100...  or MBN 01.314...100...  or MBN 31.02 02 05 14...5...

it is taking mutable numbers across the divide into abstract mathematics as it seeks to describe an

impossible physical system, a chord of unlimited notes that could never be played.

Thirdly as a small amount of multiplication and division are introduced in Example R Study: The

Divisors of Seventy-two it might be helpful to briefly review this aspect of mutable base numbers. In this
example of computation through tonal music the question arises of how the sum MBN 471 ÷ 51 should be

handled. Interpreted as a physical structure this sum translates into the factor format:

h1, h2, h3, ... through h47      divided by       h1, h2, h3, h4, h5

But as division involves the removal of a bottom level of nesting equal to the divisor harmonic series (or

nested series) there is a problem because MBN 471 is a prime and cannot be expressed as a nested

structure beginning MBN ...0501 (i.e. 47 is not divisible by 5 without remainder). However all is not lost;

forty-five plus two equals forty-seven and forty-five – MBN 9501 – does have the required structure to

match that of the divisor – MBN 1501. So by removing the column base ‘5’ division of forty-five by five is

achieved.
                                MBN:      9501          ÷           1501               =                     91

h1, h2, h3, h4, h5; h10, h15, h20, h25, h30, h35, h40, h45 ÷ h1, h2, h3, h4, h5 = h1, h2, h3, h4, h5, h6, h7, h8, h9
 

But what of the remaining two leftover? Well, as division by five is the same as multiplication by the

fraction one-fifth, multiplication provides an answer.

Number Mutable Harmonic Series Ratios
Mutable Number Two: MBN 21 h1, h2 ascending series   2:1, or 24:12
Mutable Number One-fifth: MBN 01.15 h60, h30, h20, h15, h12 descending series  12:60

Two multiplied by One-fifth: MBN 21 x 01.15 h60, h30, h20, h15, h12  x  h1(h12), h2(h24)
Equals Two-fifths: MBN 01.25 h60, h30, h20, h15, h12, h24 descending/ascending 24:60,  2:5

Therefore Forty-seven ÷ Five: MBN 471 ÷ 51  =  (451 + 21)  ÷  51  =  91  +  01.25  =  91.25   (Nine and Two-fifths)

Finally, to recap the role fractions in the context of tonal music: Although human ears are unable to

grasp directly the descending (wavelength) whole number relationships which fractional mutable base

numbers express, we are able to make something of the aural patterns they represent, by reading them in

ascending order. In approaching these audible ‘fractions’ the wrong way round, and interpreting them

within the context of a scheme of nested harmonic series, our ears discover the sonority of the minor triad

and the chord of the added sixth amongst others – truly a fruitful misapprehension.
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