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The Heart of the Matter

“In the snow, flat-topped hillocks and shoulders, outlined with wavy edges, ridge below ridge, very like

the grain of wood in line and in projection like relief maps. These the wind makes I think and of course

drifts, which are in fact snow waves. The sharp nape of a drift is sometimes broken by slant flutes or

channels. I think this must be when the wind after shaping the drift first, has changed and cast waves in

the body of the wave itself. All the world is full of inscape, and chance left free to act falls into an order as

well as purpose”.
Gerard Manley Hopkins – lines describing a snowy landscape, from his Journal: 24th Feb. 1873.

HARMONY AND MUTABLE NUMBERS
I suspect that the majority of mathematicians would hold to the view, more or less strongly, that

‘mathematical truth’ has some form of existence which transcends the material world: an appealing idea

of ancient lineage, reaching back at least to the Greek philosopher Plato. Another view, perhaps less

ancient and less well supported, is that mathematics finds its existence wholly within the material world;

indeed, that it is a product of the way the universe is. In this book the latter more structuralist and

somewhat Aristotelian approach is pursued, through viewing and modelling some aspects of music as

mathematics, expressed in the form of a pseudo-physical oscillatory system. Or put another way, a
likeness is drawn between tonal music in performance and the evolution of self-organising periodic

physical systems, both of which, are interpreted as mathematical computation. To this end a somewhat

arbitrary distinction is drawn between ‘abstract’ symbolic mathematics, that is the normal traditional math

and, ‘physical’ mathematics – the behaviour of physical (or pseudo-physical) oscillatory structures1.

Whether any such self-organising physical systems actually exist in the material world, truly following

tonal organisational principles, I do not know and leave that question to others better able to judge2.

However, placing that question aside, western tonal music does appear to fit the proposed model when

viewed as a system standing on the threshold of self-organisation – i.e. a pseudo-physical oscillatory

system. Musicians and composers give material life to their symbolic scores – they play them – and

through the discipline of ‘performance validation’, composers, musicians and audiences choose between

acoustic structures and relationships which are aurally meaningful and those which don’t succeed as well.

Over time the cumulative effect of these choices appear to have guided western music toward the

discovery of a powerful underlying structural device – a system of number processing by harmonic

progression and metrical change.
The train of thought being pursued here, is that underlying the organisational imperatives of tonal

music there lies a physical form of computation, not oscillation described by ‘abstract’ mathematics, but

physical processes which actually are mathematics. Such physical systems are here termed Modulating

Oscillatory Systems (abbr. MOS). Though in tonal music these processes are only partially realised and



incomplete, ultimately, the harmonic and metrical core of tonal compositions (when viewed as pseudo-

physical oscillatory systems) can be reduced down to the outlines of a position-value counting scheme: A

number system which is here termed Mutable Base Numbers (abbr. MBN).

Overall, this mathematical view of tonally organised western music rests on the more general, and it

must be admitted extremely speculative, conjecture that self-organising periodic systems in the material

world, operating under the influence of the Second Law of Thermodynamics, form a broad set of

phenomena that create and develop structures which are in essence physical examples of the fundamental

theorem of arithmetic – i.e. that every integer is constructed from a unique set of prime numbers or prime

factors. For example, the number thirty can be expressed as the product of three relatively small numbers:
2×3×5. Thirty, or whatever number, of positive units (+1+1+1...) added together to form a given

magnitude is inefficient compared to multiplying out a few well chosen factors. Which is to say structural

relationships that take on a multiplicative (rather than additive) form are inherently more efficient. And, as

we shall see, the effect of nesting one harmonic series within another reproduces this superior

multiplicative organisational principle in oscillatory form; in particular, in music, producing the acoustic

structures we recognise as harmony and meter: An analogue of which, caught Hopkins eye on that cold

February day in 1873. Thus by combining a process of physical factorisation with the principles of

positional notation, it is conjectured, a useful model of systems in the material world might possibly be
derived, and subsequently, applied to tonally organised music. Essentially, this is simply a restatement in

part – with some degree of elaboration – of the connection drawn between numbers, music and physical

reality, made by the Pythagoreans more than 2,500 years ago.

In order to easily grasp the concept of mutable numbers and their encapsulation of harmonic motion

and change of meter in western music, we must first remind ourselves about the structure and mechanics

of counting, how units or ‘digits’3 are put together to make multi-column positional numbers. Next,

review the nature of the harmonic series, for it is to the ratios of the harmonic series that we shall need to

look, for the actual digits with which mutable numbers are made. And finally, bringing these two fields

together, construct these mysterious, beautiful, mutable base numerals, and apply them to music.

POSITIONAL NOTATION
The aim of this chapter, and indeed the whole book, is to establish the proposition: that, in principle at

least, a tonal composition is effectively a number system computation – a representation and manipulation

of number relationships in the material world. So what precisely comprises a number system?

Fundamentally, a number system is a scheme employing physical tokens, either real or symbolic, to

describe numerical relationships. From the earliest times, the most convenient physical tokens to ‘come to

hand’ for counting – keeping track of magnitude relationships – were fingers (and toes) and occasionally

the spaces between these digits; also pebbles, beads, seeds, sticks, shells, etc. have been employed4. These

early, instinctive, counting systems were probably all additive in nature. In such systems ever more

fingers, toes, pebbles or beads were required to represent larger numbers, with the more sophisticated

systems using symbolic tokens and symbols to represent groups of tokens. For example V, X, C, D and M

in Roman Numerals – the ‘V’ probably began as a picture of an open hand of five digits, later stylised,

and ten as two hands ‘X’. It was also common for letters of the alphabet to stand double use as numerals

as in the Roman, Greek and Hebrew traditions. Interestingly, the early intuitive counting schemes

generally began counting natural numbers from one rather than zero – a feature (we shall see below) they
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share with mutable base counting. However, a number of societies independently discovered a new and

powerful way of representing number relationships: position-value number systems (often termed place

notation); and, through the mechanics of these systems, some found a pressing need for a zero token to fill

empty positions. Of these various forms of positional counting, one has come to dominate mathematics.

We are all familiar with this leading position-value number system, so familiar in fact that we rarely

give it a second thought: It is of course our familiar decimal number system, written with the ten units/

digits: 1, 2, 3, 4, 5, 6, 7, 8, 9 and 0. Though often referred to as Arabic, the system originally developed in

India, and later spread to Islamic cultures through trading contacts with the Subcontinent, before being

passed on to the West. Indeed, the derivation of the word algorithm testifies to the interrelated roots of

today’s system – originating from the name of a great Persian mathematician al-Kuwarizmi, working in

Baghdad in the ninth century. Al-Kuwarizmi brought together the advances of Arab mathematics and

astronomy with the existing body of Indian and Greek learning; the translation of his work on arithmetic

into Latin: Algoritmi de numero Indorum, in the 12th century, helped to make this knowledge available in

Europe5 – as also did the contacts between European and Islamic culture in Spain.

The salient advantage of positional notation for the representation of numbers lies in its inherent

flexibility and economy – in essence it represents a loss-less compression algorithm. The digits in a

position-value number system have two meanings, firstly their intrinsic meaning of oneness, twoness,

threeness, etc. plus a second meaning derived from their column position. Thus the threeness of the unit

column’s three is multiplied by ten, to become 30, when the digit three appears in the tens’ column; and

by ‘ten by ten’ in the hundreds’ column to become three hundred, and so on. Each column shift produces a

multiplication by ten – from 3 to 30 to 300 to 3000. It is the physical positions of the digits, relative to one

another, which is the source of a digit’s second, extra, meaning. Should the physical relationships between

material tokens be lost, usually so is the number. Thus the zero digit became a vital place-holder, clearly

identifying empty columns which otherwise might be a source of confusion. In general, additive number

systems are not so sensitive to the spatial relationships of their tokens. For example in the ancient Greek

additive decimal system, three sequences of nine capital letters, plus three extra symbols, represented 1

through 9, the tens (10 through 90) and the hundreds (100 through 900) which, written in any order,

would represent one and the same value. The great advance made by schemes involving positional

notation is to combine the additive principle with that of multiplication, producing a system that can still

express every integer through the application of the ‘step by step’ additive principle while also remaining

light enough to fly efficiently to relatively large numbers by means of multiplication.

The decimal system, as its name suggests, is based on ten, or in the jargon, is a base ten number

system. The example numbers above (plus some others) could be written explicitly showing their base
tens, thus:

Number  =    1000-column    100-column   10-column    units 
   3    =                                            (3 × 1)
  30    =                                 (3 × 10) + (0 × 1)
 300    =                   (3 × 10×10) + (0 × 10) + (0 × 1)
3000    =  (3 × 10×10×10) + (0 × 10×10) + (0 × 10) + (0 × 1)
3456    =  (3 × 10×10×10) + (4 × 10×10) + (5 × 10) + (6 × 1)
7890    =  (7 × 10×10×10) + (8 × 10×10) + (9 × 10) + (0 × 1)
9999    =  (9 × 10×10×10) + (9 × 10×10) + (9 × 10) + (9 × 1)

Other bases are perfectly feasible, indeed any base of two or more units can be used to construct a

positional number system. Of the non-decimal positional systems in use today the binary, octal and
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hexadecimal systems, with bases two, eight and sixteen respectively, are perhaps the most familiar – from

the domain of computing; and not forgetting the remnants of a base sixty number system evident in our

measurement of time. (A base one positional system is theoretically possible, but it lacks flexibility and is

effectively an additive system of the type a convict or castaway might use to record the passage of days.

     SYSTEM: DIGITS
     Binary: 0,1
      Octal: 0,1,2,3,4,5,6,7
    Decimal: 0,1,2,3,4,5,6,7,8,9
Hexadecimal: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
    Mutable:  h1,2,3,4,etc. hn (unlimited)

   ....................... DIGIT SEQUENCES .......................................
   Decimal Octal    Hex      Binary     Mutable Base (Factor Format)
     0       0       0      0000 0000    0       (no physical zero digit)
     1       1       1      0000 0001    1       (h1)
     2       2       2      0000 0010    2       (h1,h2)
     3       3       3      0000 0011    3       (h1,h2,h3)
     4       4       4      0000 0100    2×2     (h1,h2,h4)
     5       5       5      0000 0101    5       (h1,h2,h3,h4,h5)
     6       6       6      0000 0110    3×2     (h1,h2,h3,h6)
     7       7       7      0000 0111    7       (h1 through h7)
     8      10       8      0000 1000    2×2×2   (h1,h2,h4,h8)
     9      11       9      0000 1001    3×3     (h1,h2,h3,h6,h9)
    10      12       A      0000 1010    5×2     (h1,h2,h3,h4,h5,h10)
    11      13       B      0000 1011    11      (h1 through h11)
    12      14       C      0000 1100    3×2×2   (h1,h2,h3,h6,h12)
    13      15       D      0000 1101    13      (h1 through h13)
    14      16       E      0000 1110    7×2     (h1,h2,h3,h4,h5,h6,h7,h14)
    15      17       F      0000 1111    5×3     (h1,h2,h3,h4,h5,h10,h15)
    16      20      10      0001 0000    2×2×2×2 (h1,h2,h4,h8,h16)
    17      21      11      0001 0001    17      (h1 through h17)
    18      22      12      0001 0010    3×3×2   (h1,h2,h3,h6,h9,h18)
    19      23      13      0001 0011    19      (h1 through h19)
    20      24      14      0001 0100    5×2×2   (h1,h2,h3,h4,h5,h10,h20)
    21      25      15      0001 0101    7×3     (h1,h2,h3,h4,h5,h6,h7,h14,h21)
    22      26      16      0001 0110    11×2    (h1 through h11,h22)
    23      27      17      0001 0111    23      (h1 through h23)
    24      30      18      0001 1000    3×2×2×2 (h1,h2,h3,h6,h12,h24)
    25      31      19      0001 1001    5×5     (h1 through h5,h10,h15,h20,h25)
    26      32      1A      0001 1010    13×2    (h1 through h13,h26)
    27      33      1B      0001 1011    3×3×3   (h1,h2,h3,h6,h9,h18,h27)
    28      34      1C      0001 1100    7×2×2   (h1 through h7,h14,h28)
    29      35      1D      0001 1101    29      (h1 through h29)
    30      36      1E      0001 1110    5×3×2   (h1,h2,h3,h4,h5,h10,h15,h30)
    31      37      1F      0001 1111    31         (h1 through h31)
    32      40      20      0010 0000    2×2×2×2×2  (h1,h2,h4,h8,h16,h32)
   etc.     –-      –-      ---- ----
   255     377      FF      1111 1111    17×5×3  (h1-h17,h34,h51,h68,h85,h170,h255)

Figure 1.1 Five position-value number systems. By convention binary is usually written with leading zeros and the
letters A through F are used for the additional digits required for a base sixteen system. The columns of mutable

number digit sequences in ‘factor format’ contain decimal numbers separated by an ‘x’ (or on occasion ‘~’ or ‘n~’).

Getting to grips with non-decimal systems can be difficult at first, as all our ingrained instincts lead

us to treat digit sequences as individual (decimal) numbers. For example, the digit sequence ‘12’ is the

number twelve ordinarily, however, this is only true for the decimal digit sequence ‘12’. In the base eight,
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octal positional number system, the digit sequence ‘12’ represents the value ten, and in the hexadecimal

system, the value eighteen. Digit sequences and number are not the same thing. Digit sequences are

structural (material) representations of magnitudes, and vary as to what actual magnitude they represent,

depending on the base(s) of the system being employed. Moving between number systems with different

bases is endlessly confusing, and for the most part, it is easier to stick to decimal numbers and use a chart

of equivalent digit sequences for other bases. A short comparative chart is provided in Figure 1.1. With

some relief, it can be seen that the digit sequences of mutable base numbers are much less confusing than

thinking of ‘34’ or ‘1C’ as the number twenty-eight!

Amongst the positional number systems invented by various civilisations, the one which developed

in India during the sixth century AD had a particular advantage, in that it used separate compact glyphs

for each symbolic digit. The Babylonian, Mayan and Chinese systems all economised in this area, using

the additive principle to generate some digits from others. For example in the Chinese ‘rod’ notation, one

was written |, two was || and four ||||. The advantage of separate compact symbols for a number system lies

in the facility it lends to the execution of written calculations.

A position-value number system does not have to have a single fixed base, though most do – for
quite self-evident reasons of clarity and ease of use. Historically there have been examples of systems

with more than one base. For example the Mayan of central America mixed base eighteen in a

predominantly base twenty positional number system, presumably to obtain the approximate year-length

figure of 360, from two ‘columns’. While the Sumerian/Babylonian system contains traces of parallel

bases: ten, twenty and sixty. The old British imperial measures present many other examples like pence,

shillings and pounds (bases 12 and 20) or gallons, pecks, bushels and quarters (bases 2, 4 and 8). Indeed

going further, a different but fixed base could be used for each and every column, or even more esoteric, a

shifting pattern of bases could be applied to the columns! That is, a positional number system where

columns can dynamically change their base from number to number, or even within one number. If you

are reeling from getting to grips with octal and hex, do not despair. This last, mutable base form of

positional notation – the notation that is needed to model tonally organized compositions as computations

in a positional number system – though a generalization over all systems, rests on a straightforward

natural logic derived from the harmonic series which helps to make it intuitively easy to grasp. Figure 1.2

gives a glimpse of how the unit and column digits of a physical mutable base number fit together, as

nested series, inside one fundamental harmonic series. (Mutable Base Number may be abbreviated MBN.)

Column of three physical digits

Column of three physical digits

Column of three physical digits

Mutable Base Number: 1×3x3x3  Twenty-seven

 A- H27    -h3
 D- H18    -h2

 D- H9 -h3 -h1

 G- H6 -h2

 G- H3 -h1
 C- H2

 C- H1Unit:

Figure 1.2 The mutable base number twenty-seven. Each column contains three physical digits (i.e. three notes),
with the upper columns nested within the ratios of the fundamental series (H1 through H27). On the left is a chord

containing the frequency relationships which physically embody the value twenty-seven.
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Before going on to describe the mutable base positional number system more fully, it could be

helpful to look in detail at the physical tokens, the digits, to be used – i.e. the ratios of the harmonic series.

THE HARMONIC SERIES
For traditional tonal music, the basic physical elements of harmony are derived from the natural modes, or

default patterns of vibration, of a physical object. The great eighteenth century theorist and composer

Jean-Philippe Rameau (see Chapter 8.12) used the term corps sonore, the sounding body, which he

described as nature’s gift to mankind. And it was a French scientist, Joseph Sauveur, who first described

the harmonic series in 1697.

When a physical object is energised by some event, say a piano string struck by a felt-covered

hammer, the energy transferred to the string by the hammer blow, causes the object, in this case a piano

string, to oscillate. As the string oscillates to accommodate the sudden input of energy, what gradually

occurs is a transfer of the energy from the string to the surrounding atmosphere. Thus the energy reaches

our ears in the form of pressure waves thrown off by the vibrations of the string – we hear a note. Over

time the note fades away, as more and more of the initial input of energy is lost to the air. Eventually, the

string comes to rest, or equilibrium; it has no more excess energy to liberate, and the note falls silent.

Significantly, after the initial strike of the hammer, the string settles down to sound one note and not a

jumble of sounds. However, this one note that we perceive, contains many ‘sub-notes’ which we rarely

separately distinguish, but apprehend as the timbre – the tone quality of the note. These ‘sub-notes’ are

themselves not jumbled up either. The note we perceive (under normal circumstances) is the fundamental

oscillation of the string. The sub-notes are a range of whole numbered multiples of this fundamental

oscillation. Together they form a sequence of integer harmonics – a harmonic series, which is customarily

written: h1, h2, h3, h4, ..., hn.

In this form, the harmonic series is described in terms of frequency – a timebased measure. The

wavelength of the second harmonic is half that of the fundamental harmonic (Figure 1.3) and as both

waves travel at the same speed, two ‘h2-waves’ will reach the ear in the time one fundamental ‘h1-wave’

passes. Over the time it takes for the fundamental tone to move through one complete cycle the second

harmonic will complete two cycles. The second harmonic, h2, is twice as ‘frequent’, the third harmonic,

h3, three times as ‘frequent’, the fourth four times, and so on.

source ---> ear

h1

h2 h2

h1h1

h2 h2 h2 h2

wavelength

wave-
length

Figure 1.3 A schematic diagram of a sequence of waves, showing the wave peaks of frequencies h1 and h2. 
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Thus in the strictly mathematical sense, the overtone sequence is a harmonic series of wavelength

relationships: one, one-half, one-third, one-quarter, etc., as illustrated in the introduction and Figure 1.3;

but somewhat paradoxically, its normal written expression takes the form of an arithmetic series of whole

number frequency relationships: one, two, three, etc.

<----------------------------------------- Fundamental (first) Harmonic h1 ------------------------------------->

<-------------- Second Harmonic h2 --------------->

<------- Third Harmonic h3 ------->

< Fourth Harmonic h4 >

Non-whole Number Harmonic h4.6 doesn't fit!

Figure 1.4 The first four natural modes of vibration of a sounding body: h1, h2, h3 and h4, followed by an
impossible oscillation: h4.6 !

In Figure 1.4 the straight axis at the center of each vibrating string represents the string at rest – its

two ends firmly fixed to the piano’s frame and bridge. The wavy lines represent distinct modes of

vibration or oscillation which are possible for the string to perform as it stores and radiates energy to the

surrounding environment. (There are some details concerning wave types and other technicalities being

glossed over here, as they would needlessly complicate the discussion.) Because the string is fixed at both

ends, all the possible modes of oscillation must cleanly start and finish at these two fixed points. The

patterns of vibration which meet this criterion are termed standing waves; they are the waves which can

maintain a permanent existence on the string, so long as energy remains. This restriction limits the string’s

permissible modes to complete (whole) vibrations. Non-whole vibrations won’t fit, h4.6 the last example

in Figure 1.4 illustrates this; h4.6, and any other non-whole numbers/waves, cannot survive the fixed ends

and die away almost as soon as they form. The standing waves that can and do find permanent existence

on the string are the oscillations of the harmonic series: h1, h2, h3, h4, ..., hn.

Indeed, it could be argued that in a sense the harmonic series is the universal chord, the statement, in

ascending order, of every possible natural interval – the whole number ratio or relationship between two

tones. Figure 1.5 illustrates the first sixteen ratios or ‘notes’ of the harmonic series. By firmly striking

bottom C – h1 on the left of Figure 1.5 – all the other fifteen harmonic partials, and more, will also be

sounded to various degrees. In western music, out of the extensive array of intervals aurally discernible,

nature’s gift to use Rameau’s graceful expression, a few simple ratios from the beginning of the harmonic
series form the basis for the harmonies (and rhythms) of tonal music. Chords that stretch beyond the first

eight partials of the harmonic series (essentially seventh chords) become increasing difficult for the ear to

decipher and interpret. As chords become more complex – that is harmonies involving relationships from
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extended series stretching out through h9, h10, h11, etc. – the ear gradually loses track of the relationships

between the individual notes, particularly in regard to their connection with a fundamental tone: The unit

frequency that allows other note frequencies to be ordered and made aurally intelligible.

1:2 2:3 3:4 4:5 5:6 6:7 7:8 9:108:9 10:11 11:12 12:13 15:1613:1414:15

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h14 h15 h16

1:12 1:13 1:141:15 1:161:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:10 1:11

Figure 1.5 Harmonic Series: ratios of the first sixteen frequencies of the series are shown above the stave, with the
ratios between adjacent harmonics marked below the stave and bottom the conventional shorthand ‘h1’ for the

fundamental, to ‘h16’. (On occasions a capital H may be used to distinguish the lowest or most fundamental of a
group of nested series – as in Figure 1.2 above.)

OSCILLATION AND NUMBERS
Now, having reviewed something of the nature of both number systems and the harmonic series, we are in

a position to embark in earnest upon the construction of mutable numbers, first considered in terms of

dynamical oscillatory structures (factor format mutable numbers) and then in the guise of a formal

number system (subscript format mutable numbers).

In the Modulating Oscillatory Systems (MOS) model of an oscillatory structure, numbers are formed

from patterns, and groupings of patterns, of integer related vibrations – the ratios of the harmonic series –

and so every number, strictly, represents a division, rather than a multiplication of unity. Yet in essence,

numbers are ratios: the relation of a set of magnitudes to a given unity. Numbers in MOS structures, that

is chords considered as configurations of partials extended outward to include their enfolding harmonic

series, partition their fundamental period into ever finer divisions (larger numbers) as they become more

complex. Ultimately, at each discrete step or state of its evolution, a modulating oscillatory system (i.e.

tonal compositions consisting of coherent sequences of chords) can be represented as a set of relationships

embedded within a harmonic series of greater or lesser extent – a mutable number of greater or lesser

magnitude. At least in principle, by enlarging the scope of such series, eventually, not only the harmonic

progression of the objective notes, but also the higher frequencies of timbre and lower frequencies of

temporal duration may be encompassed. Thus overall, the MOS model seeks to reduce the salient

elements of a tonally organised composition to one set of integer relationships – one fundamental nesting

harmonic series. Taken to its extreme logical application, this most fundamental series could be founded

upon the period of the whole piece in performance. However, in practice, fundamental harmonic series

founded upon (approximately) the composition’s pulse/beat, and extensive enough to encapsulate both the

sense of key and harmonic flow of a composition, are sufficient. Although somewhat premature, Figures

5.18 and 13.8 give examples of this approach. 

So, to begin at the beginning, the number one is h1 of a harmonic series consisting of one oscillator,

two is h1 and h2, not h2 alone – h2 alone would be the number one, or h1, of a system based on double

the frequency. To make coherent structures in the material world, each number must contain its own

fundamental point of reference, as, unlike formal systems, there is no external agent to make sense of

relationships in isolation. The number three is formed from h1, h2 and h3 together. The number four
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introduces a new element: four can be h1, h2, h3 and h4 of a harmonic series; but the Second Law of

Thermodynamics decrees that physical systems will relax where possible to their ground state and so the

physical number four is most often found in the form of h1, h2, nesting h4. That is, two entangled

harmonic series, one nesting within the ratios of another, more fundamental, series – which in abstract

mathematics might be expressed as the prime factors 2×2 (Figure 1.6).

B nested
harmonic
series

fundamental (underlying) series

   H4-C-h2
      |
   H2-C-h1

H1-C

single harmonic series

               h4-C
         h3-G
   h2-C

h1-C

A

Figure 1.6 The two possible configurations of the physical number four, arrangement A contains one more
component than B. Configuration A could be considered the ‘physical’ number four’s prime/excited state while B

represents its ground state. (The upper case H distinguishes the fundamental series from the nested series in B.)

In contrast to the physical number four, five like one two and three, cannot be broken down into any

nested grouping and so takes the form of a single series: h1, 2, 3, 4, 5. Next, the physical number six,

which could take the complex and energetic single series form of h1 through h6, again allows scope for

nesting to occur: h1, 2, 3 nesting h6, or 3×2 in abstract math. Notice also that the ground state is 3×2, and

not 2×3, which is a slightly more energetic arrangement (h1, 2 nesting h4, 6). Musically these two

configurations could be expressed as time signatures/meters: 3/4 for the ground state (3×2) and 6/8 for the

slightly more energetic arrangement of 2×3. See Figure 1.13 below. Though not pursued in this chapter,

from the standpoint of the MOS model, harmonic and metrical elements of music are viewed as aspects of

the single phenomenon – oscillation – and are equally amenable to interpretation as mutable numbers. 

Each number, in whatever configuration, is taken to be composed of one or more complete harmonic

series, that is, there are no gaps between the fundamental tone and the topmost frequency. For example,

3×3 (h1, 2, 3 nesting h6, 9) is the stable ground state of the physical number nine; but a configuration of

h1, 2, 3 nesting h9, with h6 missing, is a unstable transitory arrangement that would collapse to h1, 2, 3,

nesting h6 (3×2) the ground state of physical number six. Equally, h1, 2, 3 nesting h3, 6, 9 is untenable, as

in a wholly relational system no two different things can occupy entirely the same relationships (i.e. two

h3 ratios) – if they did they would be one thing, rather than two different things – h1, 2, 3 and h3, 6, 9 are

two separate systems, both representing 3, the physical number three, the first one built on frequency f=1

and the other, f=3.

As the physical numbers of the MOS model’s mutable base number system are made by patterns (or

groups of patterns) of oscillations drawn from the ratios of the harmonic series, with the majority of

numbers capable of forming nested structures. Most physical numbers will have a variety of forms, that is

different nested groupings, each nominally of a differing energy level – all other factors being equal. One

of these groupings will be the number’s ground state or normal form. The ground state pattern of a

mutable base number is distinguished by having prime oscillatory groups arranged (nested) in ascending

order, from the most complex at the lowest frequency, through to the least complex at the highest

frequency/energy level.
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Thus the Mutable Base Number (MBN) forty-two in factor format:

Ground state - MBN forty-two  =  7x3x2  -  (h1, 2, 3, 4, 5, 6, 7 nesting h14, 21 nesting h42)
Excited state - MBN forty-two  =  7x2x3  -  (h1, 2, 3, 4, 5, 6, 7 nesting h14 nesting h28, 42)

The ground state employs h21 whereas the more energetic excited arrangement uses h28. Both

configurations yield forty-two fluctuations per period. Such various groupings might be thought of as

different hues, of a single, selfsame number. Most, but not all, physical numbers possess a broad palette of

shades. Some physical numbers, however, stubbornly resist taking any less energetic form than one

complete set of partials and have only a single vibrational configuration. These are the prime oscillatory

patterns – immutable numbers one might say – for example, h1 through h13 or h1 through h71 – thirteen
and seventy-one.

Prime state: MBN thirteen  =  13  –  h1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.

The factor format introduced so far, essentially represents the dynamical aspect of modulating oscillatory

systems; a formal representation, similar to other number systems, will be introduced below.

Prime Oscillations
Perhaps the most striking feature of a physical oscillatory number system, is that all numbers possess

prime vibrational patterns; it’s just very unlikely that the second law of thermodynamics will turn a blind
eye for long to a system which could relax to a less energetic configuration. For example, returning again

to the number six:
    Prime state 6  –>  Ground state 3x2 

 ( h1, 2, 3, 4, 5, 6  –>  h1, 2, 3 nesting h6)

Piling six oscillators on top of each other is a rather inefficient way of creating six fluctuations per period.

Prime state: MBN six  =  h1, 2, 3, 4, 5, 6 or  1+2+3+4+5+6  -  least efficient
Intermediate: MBN six  =  h1, 2 nesting h4, 6 or   2x3  -  quite efficient
Ground state: MBN six  =  h1, 2, 3 nesting h6 or   3x2  -  most efficient

The most efficient method of generating a physical mutable base number is by multiplication rather

than addition. Building up layers of nesting in a mutable base number system represents multiplication,

removing them division. This echoes of the fault line between the purely additive and the more efficient

positional number systems, the latter building on the additive principle by introducing column shifts,

taking the number system to a new dimension – multiplication. However, arbitrary operations of any sort

would not be possible in truly self-organising material systems; addition, subtraction, multiplication and

division are feasible only if done in accordance with the principles and mechanics of the system. Of

course in a pseudo-physical system, like a tonal composition, the composer could do anything – and

occasionally does! Music is only a partial example. A truly physical number system is a rather awkward

and cumbersome object in comparison to the flexibility found in the abstract symbolic systems used by

mathematicians.

The fact that all whole numbers can be expressed in single column additive form, in the mutable

base number system, but less than all numbers can also take on the multi-column format that involves
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multiplication, would appear to suggest that the additive principle is primary or in some way more

fundamental. In an ultra high energy environment, all physical mutable number structures would take the

additive form, absorbing the maximum amount of energy possible. However, at much lower energy levels,

the scarcity would encourage mutable number structures to husband their meagre energy load by

distributing it amongst fewer ratios. This, most but not all numbers could achieve through the

reconfiguration of their digit sequences, so as to form more efficient nested structures – the primes

excepted. With the majority of numbers having a range of digit sequences available to them (i.e. 6, 2×3 or

3×2 for MBN six) often there would be scope to find a matching structure in balance with the surrounding

environment.

From the perspective of these ‘physical’ (mutable number) digit sequences the relationship between

the prime and non-prime integers of normal ‘abstract’ mathematics is somewhat different. As all physical

numbers have a prime state digit sequence (a single series form), one might ask: What is wrong with the

traditional primes; rather than what is right? What is wrong is that the traditional primes, viewed from the

perspective of mutable numbers, cannot form internal nested patterns of one harmonic series fitting inside

another. It is the traditional primes’ irregular oscillatory ‘shape’ which makes them awkward and

irreducible and thereby unlikely to survive in a world ruled by the Second Law – except in low

denominations, twos and threes in particular. Larger prime number systems could escape to lower energy

levels by adding or losing a ratio and then go on to form a nested structure. It is interesting in this regard

to note that highly compound numbers generally lie adjacent to the primes. This aspect – the entropy of

mutable numbers – is further investigated in Chapter 3.

NUMBER PATTERNS
To digress a little from the main path, in this section a useful visual representation of nested structure, in

the form of number patterns, is introduced. These patterns appear in illustrations throughout the book.

Square Oblong Triangular
1 2

4 6

9 12

3

6

10

Figure 1.7 The first few square, oblong and triangular numbers.

Ancient forms of abstract mathematics would probably have involved the use of physical tokens to

represent quantities and magnitudes, with pebbles, seeds, sticks, etc. among the most likely counters,

beyond the ten finger-digits. In such presumably purely additive number systems, the arrangement of

tokens can naturally fall into patterns. The early Greek mathematicians noticed and investigated many of
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these number patterns, in particular classifying some arrangements of counters as forming square, oblong

and triangular numbers. Later mathematicians extended the idea of number shapes to pentagonal and

hexagonal numbers, and eventually to the generalised concept of polygonal numbers. However, it is the

square and oblong numbers which are of particular interest, in that they graphically encapsulate an aspect

of nested oscillation; and to fully exploit their illustrative potential, the more general term rectilinear is

useful to indicate number patterns forming fully filled out rectangular shapes in any number of

dimensions. (Interestingly, the square and oblong patterns mimic the multiplication principle of positional

notation and perhaps hint at its origin.)

Leaving aside the triangular and other polygonal arrangements, the rectilinear number format could

be thought of in terms of coordinate dimensions, three of which can be represented on the page as the

‘xyz’ axes: vertical, horizontal and angled. And such a Cartesian approach illustrates a basic link between

geometry and number patterns. In this classification all the prime numbers form one-dimensional

rectilinear numbers (vertical), there are no multi-dimensional arrangements of these numbers which result

in complete rectilinear configurations. Equally, after two, all even numbers will have at least one two-

dimensional configuration consisting of two columns, e.g. 2×3, 2×5, 2×7, etc. Some numbers will possess

patterns of filled rectangles in three or more dimensions, beyond the notional 1×1×1, the first of these is

the cubic number eight (2×2×2) illustrated in the bottom right hand corner of Figure 1.9. Twelve also has

three-dimensional configurations: 3×2×2 or 2×3×2 or 2×2×3, as well as the two-dimensional: 4×3, 3×4,

6×2, 2×6 and its one-dimensional prime state 12.

h1
h2
h3
nesting h6

One Dimension Two-dimensional

(ground state)

(p
rim

e 
st

at
e)

(intermediate state)

maximum -----------> energy/complexity ------------> minimum

h1
h2
nesting h4, h6

h1
h2
h3
h4
h5
h6

3×22×36

Figure 1.8 The number six has three possible rectilinear configurations: 1×6, 1×2x3 and 1×3x2.

These fully filled rectilinear number patterns mimic the possible nested configurations of whole

number oscillatory combinations and mutable numbers, thus making helpful visual aids. For example,

MBN six (formed from the factors 2 and 3) has two arrangements in two dimensions: 3×2 and 2×3. In

oscillatory terms the 3×2 arrangement would be inherently the most efficient and so could be considered

the ground state. Below in Figure 1.9, the vertical ‘y’ axis has been chosen to represent the first or

fundamental layer in the system, the horizontal ‘x’ axis the second layer and the angled ‘z’ axis another

level of nesting. In later chapters the ‘xyz dimensions’ will be used to represent three levels of nested

structure: 1) the fundamental nesting series, 2) nested series and 3) aggregated series, respectively.

While all numbers have a one-dimensional rectilinear form, the prime numbers two, three, five,

seven, etc. (seven not illustrated in Figure 1.9) do not have a regular rectilinear configuration in two or

more dimensions; for example, three and five illustrated in two dimensions in Figure 1.9. In contrast, six

has two two-dimensional arrangements and eight has two two-dimensional arrangements and also one
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three-dimensional form. All these arrangements are shown in Figure 1.9. Also illustrated on the right of

Figure 1.9 is the dominant-seventh chord in a one-dimensional configuration, h1 through h8. Perhaps the

ultimate source of the instability and motive energy it embodies might be attributed in some degree to the

attraction of the ‘energy well’ represented by its ultra-efficient three-dimensional ground state.

  

Rectilinear Numbers

1 2
3

4

6
5

One-dimensional

Two-dimensional

2x2

7

2x2x2

Three-dimensional
(ground state)

(prime states)

(ground state)

not
rectilinear!

not
rectilinear!

C-h8

C-h1
C-h2

C-h4
G-h3

E-h5
G-h6
A#h7

(energy well
below

the seventh
chord)

2x33x2
(ground state)

2x4

4x2

(ground state)

Figure 1.9 The first eight natural numbers expressed in ‘rectilinear’ format. (Three and five also illustrated in non-
rectilinear two-dimensional arrangements.)

MUTABLE BASE NUMBERS
In the mutable base position-value number system used to describe and model tonal music in the form of

‘physical numbers’ expressed in musical sound, each harmonic series, in a more or less complex chain of

nested harmonic series, can hold any number of integer ratio ‘note-digits’, and each of these harmonic

series of variable extent equates to a column in the mutable base positional number being expressed.

By definition the initial column in a number system, the units column, is base one – it defines the

unit. For mutable numbers the initial column defines the absolute fundamental frequency of the system,

and, in the formal subscript format, encompasses the unit alone: ‘MBN 01’. However, in the factor format

notation – which more nearly mimics the physical systems being described – the unit may on occasion be

omitted and taken as understood, thus for Fig.1.2 ‘1×3×3×3’ could be written ‘3×3×3’.

As each succeeding column represents another level of nesting within a unit/fundamental harmonic

series, the extent of any additional column/series contributes a share to the absolute value being

expressed, with the cumulative product of earlier column bases being combined through to the last, most

significant, column and the digit it contains. As illustrated in Figure 1.2, where the least significant

column steps in units (H1, H2, H3), the middle column steps in base three (H3, H6, H9) and the highest

column steps in base three-by-three (H9, H18, H27).

So for example, after defining the unit value, whether explicitly or not, if the second column is base

five and its digit is six, the number thirty emerges: 1×5×6. However reversing this pattern, if the second

column (after defining the unit value) is base six and its digit is five, the same number thirty would still

emerge: 1×6×5. Both these arrangements describe the same number, though by two different digit

sequences – illustrated in Figure 1.10.
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MBN thirty, 1×5x6 MBN thirty, 1×6x5

h1

h2

h3

h4

h5

h10 h15 h20 h25 h30nesting

h1

h2

h3

h4

h5

h6

nesting h12 h18 h24 h30

Figure 1.10 Number pattern illustration of MBN thirty as two different nested oscillatory structures or mutable base
digit sequences. The fundamental nesting layer is represented vertically and the nested upper layer horizontally.

Thus the bases of mutable numbers (i.e. the nested harmonic series) are in no way fixed; any column/

nested series, after the initial column’s unit base, can potentially have any base; and for many numbers, by

rearranging the column bases, a different digit sequence can be arrived at, which still represents the same

value as the former arrangement. For thirty, in factor format, apart from the digit sequences illustrated

above, eleven other sequences are possible:
Groundstate: MBN thirty  =  1×5x3x2  (h1, 2, 3, 4, 5 nesting h10, 15 nesting h30)
Intermediate: MBN thirty  =  1×5x2x3  (h1, 2, 3, 4, 5 nesting h10 nesting h20, 30)
Intermediate: MBN thirty  =  1×3x5x2  (h1, 2, 3 nesting h6, 9, 12, 15 nesting h30)
Intermediate: MBN thirty  =  1×3x2x5  (h1, 2, 3 nesting h6, nesting h12, 18, 24, 30)
Intermediate: MBN thirty  =  1×2x5x3  (h1, 2 nesting h4, 6, 8, 10 nesting h20, 30)
Intermediate: MBN thirty  =  1×2x3x5  (h1, 2 nesting h4, 6 nesting h12, 18, 24, 30)
Intermediate: MBN thirty  =  1×10x3    (h1, 2, 3, 4, 5, 6, 7, 8, 9, 10 nesting h20, 30)
Intermediate: MBN thirty  =  1×3x10    (h1, 2, 3 nesting h6, 9, 12, 15, 18, 21, 24, 27, 30)
Intermediate: MBN thirty  =  1×15x2    (h1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 nesting h30)
Intermediate: MBN thirty  =  1×2x15    (h1, 2 nesting h4, 6, 8, 10, etc. through h30)
Prime state:   MBN thirty  =  30            (h1, 2, 3, 4, etc. through h30)

In practice, mutable digit sequences amount to arrangements of the factors (not necessarily prime factors)

of the value being represented, and this feature of multiple digit sequences is an expression of the

commutative nature of factors: that is, the order in which the factors are multiplied doesn’t change the end

result – but does change the path by which the end result is achieved. Unsurprisingly, this form of

representing physical mutable numbers is called factor format.

  

The Role of Zero
In the physical world a dynamical mutable base number structure has no zero token indicating an empty

column and multiply by a predetermined base, indeed, it doesn’t have tokens at all, rather it is constructed

from real material relationships. In a physical system one might take the absence of structure and

relationship to constitute zero but this would only be meaningful from the perspective of an external

observer. Thus the digits in a physical number system have no terminating digit (unlike octal: 1, 2, 3, 4, 5,

6, 7, 0) marking the close of one column and an overflow into the next. Mutable digits continue without

limit, starting from one: h1, 2, 3, 4, ..., hn. However, in the abstract formal representation of physical

mutable numbers offered below – subscript format – a use will be found for the zero token.

A physical mutable base number system is essentially a chain of interlinked nested harmonic series.

The system must store a positive non-zero number in each link/column – so as to determine the value of
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any succeeding link(s). The system stores the history of its own evolution in its columns, which it must

do, in order to determine and preserve its structure – as its form, its column structure, is not predetermined

or externally referenced.

For example, in the decimal numbers 203 and 243, the zero in the former digit sequence transmits,

or stands in for, a predetermined ‘multiply by ten’, while the four in the latter, both transmits a ‘multiply

by ten’ to the succeeding columns and adds ‘four by ten’ to the sum. In contrast, the (ground state)

mutable base digit sequences, in factor format, for these two numbers (decimal 203 and 243) are: 1×29×7

and 1×3×3×3×3×3. Here, all the leftward column(s) simply transmit their ‘base’ multiple (like the zero

does in fixed base systems) to the right-hand additive column; and this transmission occurs without

columnar addition (as in the mid-column plus 0×10 in 203) . Thus while there are no ‘zeros’ in a physical

mutable base number structure – every column/series has a non-zero oscillatory pattern (see Figure 1.2)

enchained to its neighbours – the function of zero is present, in that whatever the column values happen to

be, is transmitted on to the next column. For example, the five column links of the physical mutable

number 1×3×3×3×3×3 transmit their multiplier values to the sixth, most significant column.

Factor Format: MBN 1×3x3x3x3x3  =  (1×3x3x3x3) x 3  =  Decimal 243

This may seem academic as the factor format just amounts to multiplying out factors, pure and simple.

However, what must be remembered is that the factor format represents a physical (or pseudo-physical)

system, and when the format is translated into a dynamical structure, as in Figure 1.2 for MBN twenty-

seven, this way of organising the factors reflects the actual mechanics of the system. Every mutable base

number translates to a physical structure of nested whole number relationships. 

Now the zero-like function of passing on a multiplier effect in factor format model of nested

harmonic series can be used to construct a representation of mutable numbers which is strikingly similar

to other positional systems. Below the number three thousand in decimal and mutable numbers have their

factors represented as column base subscripts.

        Subscript Format Decimal:   3x10 0x10 0x10 0x1 MBN:      2x2  0x2  0x3  0x5  0x5  0x5  0x1

        Factor Format Factors:  3 x 10 x 10 x 10 x 1 Factors:  2 x 2 x 2 x 3 x 5 x 5 x 5 x 1

Here the column bases are explicitly shown as (decimal) subscripts and the factor format mutable number

is turned around to match other positional systems with the most significant digit to the left. Also in this

formal subscript format a zero digit, transmitting the multiplier effect of the bases, fills all columns except

the final most significant one. Although the format is rather cumbersome, it does have the virtue of

familiarity and inclusivity – underlining the closeness of mutable numbers to the other positional number

systems. Thus three thousand can be written:

Mutable: 22 02 03 05 05 05 01 =  Decimal: 310 010 010 01  =  Octal: 58 68 78 01  =  Hexadecimal: B16 B16 81

=  Binary: 12 02 12 12 12 02 12 12 12 02 02 01

Perhaps the hexadecimal is the most unfamiliar amongst the fixed base numbers, but from Figure 1.1 we

know that Hex B equals Decimal 11. Thus in decimal notation:
 

(11 x 16 x 16) + (11 x 16) + 8  =  3000
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Writing in the column bases in this way produces in effect a generalised positional notation as the above

representations of magnitude three thousand, in a variety of positional formats, illustrates. (Though a

purist might prefer the subscripts of binary, octal and hexadecimal numbers written in their own notation,

this could add to the confusion as they would all be ‘10’ in their own systems.) In this universal positional

format the useful information resides in the column subscripts/bases for musically descriptive mutable

numbers, while for the fixed base systems it resides in the column digits. The mutable numbers needed for

the harmonic analysis of tonal music, have repeated zero digits and interesting bases, while vice versa,

fixed base numbers have repeated base subscripts and interesting digits. However, in normal usage, the

factor format – 1×5×5×5×3×2×2×2 – for mutable numbers is perhaps to be preferred over the subscript

format, both for simplicity and similitude to the physical oscillatory structures it seeks to describe. Here

are a few example mutable numbers and equivalents:

Number... Decimal... Mutable... Factor Format Pseudo-physical System
<------- <--------- ----------->

Six 61 61 1x6 Common major chord
Six 61 32 01 1x2x3 Bare fifth chord
Eight 81 81 1x8 Seventh chord (major)
Eight 81 22 02 01 1x2x2x2 Bare octaves
Twenty-four 210 41 83 01 1x3x8 Dominant-seventh chord
Twenty-four 210 41 64 01 1x4x6 Tonic chord
Fifteen 110 51 35 01 1x5x3 Minor chord (see Figure 1.17)
Ninety-nine 910 91 33 011 01 1x11x3x3 Ground state
Ninety-nine 910 91 113 03 01 1x3x3x11 Intermediate state
Ninety-nine 910 91 199 01 1x99×1 Prime state (1 group of 99 units)
Ninety-nine 910 91 991 99 Prime state (99 units)

Mutable numbers with fractional values are discussed separately in Appendix B.

The Role of Columns 
When viewed as a dynamic physical system, mutable number columns can and do change their value, as

their digit sequence evolves. The simple rule is that the final column is additive – the most significant

column in terms of magnitude – and all the other columns are multipliers. This most significant digit is

generally constructed from the objective musical sound of the composition, the chords, while any

multiplier columns contain information about underlying implied relationships (e.g. as shown in gray

notes in Fig. 1.12) The additive, most significant, ‘leading edge’ column could be the only column, as in

the last example above (ninety-nine), in which case there are no multiplier columns.  The primes are

always of a single additive column form – a single harmonic series. It is an interesting feature of the

mutable base number system that it distinguishes prime from non-prime numbers by structure and

mechanism – at relaxed energy levels. However, most musically interesting numbers will normally have

more than one effective column and so contain one additive column and a number of zero-digit multiplier

columns. In the subscript format these numbers take on a characteristic Nz...0c 0b 0a 01 form.

Dynamically viewed, a column and the digits it acquires, most often begin life in an additive mode

and then switch to a base multiplier mode in maturity – when the column ceases to be the leading edge of

the whole structure. One might visualise mutable digit sequences as acquisitive mechanisms, capturing

suitable ratios, by addition, in their most significant (outside) column, and then after due processing,

storing the ratios away in multiplier columns: rather like patterns of organic growth seen in nature. 
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It is often convenient to stack mutable number columns (factor format digit sequences) in ascending

order, when dealing with music in score format. (A tower format was the convention used in the Mayan

system of counting.) This allows digit sequences to be written under the staff and read like a figured bass

in a score. The ‘×’ separator can be left out in this format.

MBN 1x3x5, Fifteen

Objective
Tones

C-h1

G-h3

B-h15

15
--
5
3
1

Implied
Relationship

Value (decimal)

MBN Digit
Sequence

Figure 1.12 The mutable base digit sequence 1x3x5 below its prime state arrangement of 151 (which is equivalent
to the value in decimal), written like a figured bass below the staff. The gray implied ratios in the bass clef forming

an underlying column, would derive from the harmonic context leading up to the chord, e.g. C-major 1x2x6.

MULTIPLE DIGIT SEQUENCES
We have already seen in Figure 1.8 that the mutable base number six has three different distinguishable

configurations: h1 through h6; or h1, 2 nesting h4, 6; or h1, 2, 3 nesting h6 – the first arrangement being

the prime state, followed by an intermediate state and the latter arrangement being the ground state.

  Prime state: 6   –>  Intermediate state:  1x2x3  –>  Ground state:  1x3x2
Prime state: 61  –>   Intermediate state:  32 01   –>  Ground state:  23 01

And to recap a little on the details of mutable number digit sequences: In the factors format the order

of columns runs from left to right (like Intel reverse byte order) the least significant group of digits are to

the left – opposite to familiar positional systems. Separating the columns are multiplication signs ‘×’,

indicating nesting. Within columns, i.e. between the multiplication signs, it is convenient to use decimal

numbers – often multi-column decimals. Thus, as seen above, decimal number 203 has a mutable base

sequence of 1×29×7, with ‘29’ standing as a single mutable digit in a single column. Written into these

and some other illustrations are initial ‘1×’ and trailing ‘×1’. Notionally, all physical mutable base

numbers nest within a fundamental period – an initial ‘H1’ column of unit value – though not always

explicitly written out or physically instantiated. Effectively, factor format ‘1×5’ and ‘5’ are loosely

interchangeable. Also a leading, right-hand, ‘×1’ column entry does not change the value of a mutable

base digit sequence – but does alter the status of the preceding digit (decimal number) by converting it

into a column base. The right hand ‘×1’ is in a sense the ‘outside edge’ of a physical number, a potential

nascent column waiting to be actualised, so establishing a new column. Here are some examples:

    MBN 203 =   1×203 =  29x7 =  1x29x7 =  29x7x1 =  1x29x7x1 =  decimal 203
    MBN 2031 =  2031[01] =  72901 =   72901 =   1702901 =   1702901 =  decimal 203
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For each column in a mutable base digit structure, the ‘leading edge’ of the preceding column, the

last digit in the column, is also the first digit in the next column, and as such, it defines the period of the

new column, that is, the column base – illustrated in Figure 1.11.

MBN 3x3x3, Twenty-seven

h18

ne
sti

ng

h27

h1

h2

h3

nesting h6 h9

MBN 1×3x3x3, Twenty-seven

 [H1] h1, 2, 3 nesting h6, 9 nesting h18, 27

edge
leading
edgeunit

edge

3 digit
column

3 digit
column

3 digit
column

Figure 1.11 The columns of a mutable base number system are like the links in a chain, the columns clasp the first
and last digit of their neighbours. (MBN twenty-seven is also featured in Figure 1.2.)

The definitive characteristic of a mutable base positional system is that most values can be accessed

by more than one digit sequence. (Only the prime numbers or rather the prime oscillatory patterns, have
unique digit sequences.) This feature lends a mutable base number system a particular richness and

flexibility, in that a range of different digit sequences representing an unchanging value may be, more or

less readily, interchanged. And because mutable numbers are no more than the formal face of physical

oscillatory structures, mutable base numbers could be thought of in terms of material entities or systems,

with pathways or conjunctions between their separate structural forms, formed by these equal overall

sums6. In western tonal music these conjunctions – the common value of multiple digit sequences,

expressed as a sustained frequency – which perhaps signals the commensurability of a chord progression

to the ear. For example returning to the case of MBN six (Figure 1.13), there are three possible physical

configurations or digit sequences – MBN 61, 2301, 3201. The mutable number six illustrates how an

oscillatory position-value number can possess a range of different configurations which all yield the same

magnitude (harmonic h6), each by a varying route..
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Figure 1.13 The three configurations of MBN six displayed in graph format, with harmonic interpretation inset and
metrical interpretation below. All three arrangements yield interference patterns of six fluctuations per period,

however, each internally groups the fluctuations differently, as illustrated by the meters. 
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Indeed, six is a member of the group of most fecund mutable base numbers, that is, the set of

numbers possessing the largest range of distinguishable alternative digit sequences relative to their value,

the set of most fecund numbers begins: 2, 4, 6, 8, 12, 24, 36, 48, 72, 96, 120, 144, 192,...

These most fertile numbers are the product of the prime factors two and three, at first; later in the set five,

seven, and the other primes enter the fray7. For example, while the mutable base number six has three

distinct configurations, the number twelve possesses eight alternative, physically distinguishable,

arrangements:
12,  6x2,  2x6,  4x3,  3x4,  3x2x2,  2x3x2,  2x2x3. 

The fecundity of these numbers, and indeed most mutable base numbers excepting those with single

prime oscillatory patterns, grows more or less rapidly, as the numbers advance.

It is, I think, a most attractive notion that a single number might contain a spectrum of differing

shades or attributes. Indeed, as a mutable base number system reaches larger values, so the range of

alternative configurations grows progressively ever richer. It is this range of alternatives, I suspect, that

underlies the multiplicity of harmonic progressions found in tonal music. In essence, each chord or

harmony represents one mutable base digit sequence (in relation to all the other chords/harmonies within

the piece) and once the system – a tonal composition, in principle – rises above the most rudimentary

harmonic level, it makes contact with a set of mutable numbers with a sufficiently rich palette of

alternative digit sequences, so as to provide the necessary scope and variety required for the extended

creative elaboration of harmony, while still being held within an overarching unity.

Each individual chord progression within a tonal composition, is none other than the reconfiguration

of the digit sequence within a mutable number: two linked chords, representing in sound, two different

mutable number digit sequences of one and the same value. For example, the full or perfect cadence

progression of dominant-seventh and tonic chords, taken in isolation, can be viewed in terms of the

transition between two intermediate state digit sequences, of the mutable base number twenty-four –

illustrated in Figure 1.14.
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Figure 1.14 The full or perfect cadence chord progression (V7- I) viewed as the transition between two digit
sequences (intermediate states) of the mutable base number twenty-four.

h1, 2, 3 nesting h6, 9, 12, 15, 18, 21, 24  –>  h1, 2, 3, 4 nesting h8, 12, 16, 20, 24.
     Dominant7th  –>  Tonic Chord 

 MBN: 83 01  –>  64 01      
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And once the ear has stepped across the bridge of this single mutable number spanning the two

chords, it listens-out for the next bridging number. Perhaps it will find yet another digit sequence of the

same value to take it forward, or alternatively, be forced to seek out a new value – arrived at by an

addition or subtraction applied to the leading edge additive column of the number which originally carried

the ear to the chord. (Such additions and subtractions are counted in the units or groupings of that

column.) So stepping, from digit sequence to digit sequence – number to number – a tonal composition

proceeds with a continuous and inevitable numerical logic, from initial chord to final cadence.

In Figure 1.14 illustrating the harmonic progression from dominant G7 to tonic C-major chord (left

graph to right), the objective sounding tones are shown as black dots connected by a continuous line, and

as black notes on the staff. The grey notes below the staff and the open dots connected by a broken line,

fill in the missing ratios of the fundamental harmonic series implied by the chord progression. Ultimately,

it is the fundamental period of C-h1(32Hz) which ‘contains’ and thereby relates the two objective chords

to each other. The small anti-clockwise shift in angle between the continuous black lines in the two graphs

represents the slight relaxation of energy and complexity in the transition from dominant-seventh to tonic

chord. The digit sequence of the tonic C-major chord (4×6 or MBN 64 01) is a little closer to the ground

state (3×2×2×2 or MBN 22 02 03 01) of the mutable base number twenty-four, than the somewhat more

energetic G7-major chord (3×8 or MBN 83 01).

MBN twenty-four though relatively small is remarkable fertile in regard to distinguishable digit

sequences – there are twenty in all.

3x2x2x2 - Ground state 3x2x4  4x6   - C-major chord (tonic)
2x3x2x2 2x4x3  8x3
2x2x3x2 2x3x4  3x8   - Dominant-seventh chord 
2x2x2x3 6x2x2  12x2
4x3x2 2x6x2  2x12
4x2x3 2x2x6 - C-major chord  1x24  - Prime state
3x4x2 6x4 (24x1)

Six
Digits

C-h1

G-h24

Eight
Digits

Column
Base
Four

Column
Base

Three

24-G
-----

8
3
1

24-G
-----

6
4
1

Factor
Sequence

Value

Figure 1.15  The two stave insets from Figure 1.14 enlarged and joined together. The full or perfect cadence chord
progression of dominant to tonic (MBN 8301 –> 6401) with the mutable base number twenty-four in two of its twenty

alternative digit sequences written below the staff – rather like a figured bass. 
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Though the perfect cadence illustrates the principle of applying mutable base numbers to music, it is

rather minimalist in terms of a tonal composition, or even a tonal phrase. To encompass a broader span of

chords, larger frequency ranges with more nested columns and deeper fundamentals are required. Often

the written notes of the actual music form no more than a middle band within a wide spectrum of

frequencies. The objective tones are the crucial element dictating the overall configuration of the digit

sequence, that is, the sounding notes with their harmonic spectra. Probably the ear and aural cognition

only partially and hazily penetrate the depths of these extended mutable number digit sequences; yet, it is

entirely sufficient that they grasp what certainly does lie within their range: the notes themselves, a

number of low order partials and the conjunction frequency (normally also a low order partial) that

conjoins the chord progression. The acquisition of a common frequency linking two different integer

related configuration of tones (i.e. two chords) by the ear, provides enough information to imply, if not

deduce, the remaining deep ‘tail’ of the mutable number digit sequence.

Figure 1.16 contains a short phrase from J.S. Bach’s setting of the chorale Ach Gott und Herr

illustrating mutable numbers over a somewhat broader canvas. Other versions of this phrase are given in

Chapter 6, Figure 6.15, and in the Introduction to the MOS Examples and Analysis with Mutable Numbers

(Appendix F). In this example the mutable numbers are still confined to two columns (three-column

numbers appear in later examples), and this allows the leading edge column (upper digit) to contain series

which include all the principal notes of the harmony. This is not the predominant configuration for

mutable number digit sequences describing tonal compositions. Indeed, it would be possible here in

Figure 1.16 to break up the upper row of digits, into two lower energy columns; however, in doing this

some of the principal harmonic notes would no longer fall in the leading edge column. This is in fact the

normal disposition of notes in a MOS analysis; with most falling within the uppermost series but a few

notes dropping through to the series below. The point is that at some level of extrapolation, all the notes of

the chords in tonal compositions could be made to fall in the most significant additive column, but that

such columns are likely to form extensive, complex series. Such extended series are prone to collapse –

the Second Law again; and, in forming a variety of more stable nested structures, they also give rise to a

great wealth of harmony – not least amongst which is the minor chord.

 

Highest Digit in MBN digit sequence

Dec.Number:

Mutable Digit
Sequence:

768-G
-------

32
24
1

768-G
-------

24
32
1

512-C
-------

16
32
1

384-G
-------

12
32
1

384-G
-------

8
48
1

576-D
-------

12
48
1

576-D
-------

16
36
1

576-D
-------

24
24
1

768-G
-------

32
24
1

768-G
-------

24
32
1

768-G
-------

36
21

1.016

512-C
-------

24
21

1.016

Figure 1.16 Ach Gott und Herr – harmony by J.S. Bach. Steps between digit sequences (chords) representing the
same number have horizontal arrows; change of number, within a chord, is marked by vertical arrows and by

horizontal connecting square brackets  below. Passing notes though shown, are not considered in this example (but
are in Appendix F), and the significance of the fractional unit 1.016 is explained on page 24.
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THE MINOR CHORD
We have so far examined principally mutable base numbers with two, three and four digits in their lowest

effective column, next comes mutable base numbers with five digit columns (i.e. MBN ...501), which have

a particular significance when applied to harmonic analysis. Columns containing five digits are,

principally, the digit sequences which allow the minor chords to be created out of what are essentially, the

major relationships found at the beginning of the harmonic series. (The minor mode is explored in greater

detail in Chapter 11.)

The ground state of the mutable number fifteen (factor format 5×3) contains a three-digit column

built on the five digit base of its lowest effective column. The three digits of the upper column (E-h5, E-

h10 and B-h15) provide the structural backbone of an E-chord without major or minor third. Given that

the objective tones of a minor triad have the frequency relationship 10:12:15, the least complex single

harmonic series of which all these tones can be a member, is the series founded on frequency 1, or C-h1 in

this example, that is to say, the prime state series of the mutable base number fifteen, i.e. h1, 2, 3, 4, 5,

etc., through h15.

nesting

C-h1
C-h2
G-h3
C-h4
E-h5 E

-h10
B

-h15

C-h8

C-h1
C-h2

C-h4
G-h3

E-h5
G-h6
A#h7

A#h14

E-h10
D-h9

F#h11
G-h12
A-h13

B-h15

Figure 1.17 On the left, MBN fifteen in the form of a prime state harmonic series – C-h1 through B-h15, and on the
right, the less energetic ground state arrangement of C-h1, 2, 3, 4, 5, nesting h10 and h15.

However, the extended and complex series C-h1 through h15 is highly prone to relax to a less

complex, lower energy state, its ground state in particular. (Its only other option being 3×5 which is

somewhat more energetic.) Fundamentally, nature tends to seek out the ground-state or lowest energy

configuration of an entity or system – like a pencil balanced on end will tend to fall onto its side but not,

contrariwise, jump up onto its end. Well not very often! Paraphrasing the extended prime state series, in

the form of a nested structure, maintains the essential information content of the system, i.e. the value

fifteen, while expressing it in a more efficient form. It is this highly attractive ground state configuration

of digits (5×3), with the ‘foreign’ objective minor-third tone G-h12 from the underlying series

superimposed upon the upper E-based series (E-h5, E-h10, B-h15), that constitutes the minor triad –

viewed from the perspective of a mutable base number system. The foreground most significant column,

of the digit sequence 5×3; the higher energy upper layer, is identified by the ear with the harmonic

‘meaning’ or sense of the chord (i.e. an E rooted chord) while the awkward objective minor-third G-h12,
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interjects from its position in the background fundamental series, as a non-dissonant colouring agent,

within the harmonic gist of what is perceived to be a series built on E. A graph and number pattern

representation of this digit sequence is given in Figure 1.18.
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Figure 1.18 The minor triad: mutable base digit sequences with five digits in the column lying below the outer
leading edge, most significant digits – MBN 35 01 – illustrated in graph format and on the right as a number pattern.

PRELUDE No.1 - J.S. BACH
Finally, we arrive at a point where it is possible to undertake a little mutable number analysis. Printed

below is a mutable base number analysis of a few measures of the first prelude from book one of the

Well-tempered Clavier, often described as the definitive example of the extent, or area, of a key. A

complete and more detailed version of this analysis can be found in Chapter 12 and Example S.

In Figures 1.21a/b the transitions between digit sequences which equate to the same value are

connected by horizontal arrows, and where the ear must seek out a new connection by addition or

subtraction there are vertical arrows, upward pointing for addition and downward pointing for subtraction.

The re-configurations of columns and digits, within single mutable numbers (connected by horizontal

arrows), might perhaps provide a mechanism by which the objective chord successions of tonal music

become an aurally intelligible harmonic language. A significant attribute of these reconfigurations of digit

sequences representing a single value – i.e. chord progressions – is that the upper tone of the system, lying

comfortably within the audible range of hearing, remains constant. The upper tone of the mutable number,

the value of the system, conjoins the two chords in the progression, thus providing the ear with a clear

signal of the chord progression’s commensurability.

A range of other features of MBN analysis are also illustrated in Figures 1.21a/b. Firstly, in

measures 1 to 8, the conjunction values (in decimal/prime state mutable) with their various mutable base

digit sequences appended below, are applied to the music on the basis of the objective tones being fixed,

just as one would expect of a keyboard instrument. Thus the mutable base number values are ‘frozen’ at

their home ‘C’ tonal center levels. This is done so as to produce a more ‘readable’ analysis, where the

fundamental value varies around, but remaining focused on, the unit. However, inherent in any dynamical
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tonal scheme based on the ratios of the harmonic series, is the relational curve of the spiral (cycle) of

fifths – the problem that equal temperament was invented to overcome; well mask, rather than solve. So

as the steps charted by the MBN system from chord to chord are calculated in terms of true harmonic

series and whole number relationships, some account must be taken of the ‘flexing’ of structural

relationships which can arise from this math (e.g. the downward perfect fifth, C-h32 × 2/3 = F-h21.333...,

rather than the whole number F-h21). Music, as a pseudo or quasi-physical system, driven ultimately by

the composer’s choices and interpreted by complex mental processes, must be allowed a few liberties. The

tolerance of the ear appears sufficiently accommodating to allow such flexing to be accepted. The

processes of aural cognition, no doubt both innate and part learnt, constantly adjusting to make the best

sense of changing objective musical stimuli. In these first measures, from 1 to 8, this necessary

adjustment is shown in the flexing of the fundamental period about the mean value of C-h1(1Hz).

From measure 9 to 11 inclusive, the vice-like grip of the pitch grid has been relaxed, and in these

three measures the mutable base number system is illustrated tracking the relationships as if they were

truly self-organizing. Here the system has been set free to compute its own destiny, moving freely about in

‘pitch-space’. (This is the style of MBN system used in the first section of the full analysis in Chapter 12

and Example S.) Also, as remarked above, number operations are only possible if supported by the

mechanics of the underlying physical system – unlike abstract mathematics, which allows a greater

freedom of action. These restraints are reflected in the delimited, though still quite extensive, range of

chord progressions available to the tonal musician. Indeed, many arbitrary chord progressions do not

result is satisfying and meaningful tonal music: composers over the centuries since the dawn of the tonal

era, have been busily exploring which operations are supported, and in what order. 

Lastly, the illustration cuts to measures 20 to 24 of the prelude, where again the pitch relationships

are frozen and the relational flexing accounted for in the fundamental period, as in measures 1 to 8; here

the harmony is at its most complex and intense, with two diminished-seventh chords sandwiched together.

I 7 - IV 7 - dim 7 - dim 7 - V 7

The intervallic relationships within the diminished-seventh chord don’t allow, or at least don’t encourage,

a nested structure to develop; there is no common ground between the frequency ratios of the notes upon

which to build a nested arrangement. Figure 1.19 illustrates the situation in measure twenty-two of the

prelude. The lack of aurally discernible structure generated by the diminished chords is reflected in the

loss of the top column (layer of nesting) from the mutable base digit sequence, with the column below

extending upward by purely additive means to fill the gap, that is, up to the mutable base number carried

over from the previous chord (rather like Figure 1.16, except that there the chords do have common

relational ground). Although the mutable base number system itself can handle many diminished-seventh

chords in succession, the ear soon loses its bearings without the firm ground of rooted chords. The source

of the ‘rootedness’ of chords – fairly simple upper layer nested structures/series – disappears in these

harmonies, resulting in a perception of no discernible root – see Figure 1.19. From the view point of the

mutable base number system, the root is still there, but at a depth far too great for the ear to unravel,

sitting at the bottom of extended harmonic series of 38 and 20 ratios, respectively in measures 22 and 23.

The ‘missing’ layer of structure is indicated by two asterisks ** in the score – Figures 1.21a/b.

Considered as a sequence of mutable numbers, the prelude is in essence a computation – an example

of number processing by means of musical sound. The precise sums computed are given in Figure 1.20.
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Figure 1.19 The intervallic configuration of the diminished-seventh chord allows little scope for nested structures to
develop as the only common relational ground between the frequencies’ prime factors of 2, 11, 13 and 19 is two,
which coincides with the fundamental of the underlying series built on C-h1, rather than distinguishing the chord

from it. 

In Figure 1.20 notice that the values computed in the prelude only change by addition or subtraction

within measures where the harmony is static and remain constant between measures where the harmony

itself changes –i.e. where digit exchanges representing the same value occur. Also the overall trend from

start to finish (excluding a final flourish of activity in measures 34 and 35) is downward in value, as the

composition (a pseudo-physical system, in principle) releases energy, gradually and satisfyingly

approaching equilibrium with its surrounding environment.
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Figure 1.20 Number processing in Prelude No.1, with the mutable base digit sequence exchanges for all values
computed, drawn as points.
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1280-E
--------

4

1    (C-H1)

1280-E
--------

9
5
28

1.016

1152-D
--------

8
5
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1.029
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4
4
48
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3
4
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8
5
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8
4
36
1
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6
4
48
1
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4
4
48
1

768-G
-------

3
4
64
1

1280-E
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10
4
32
1

I

I

vib

Vb
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10

32

768-G

768-G

Value (in decimal)

Digit Sequence:
Mutable Base

Key C, H1 = 1Hz
Middle C = 256Hz

1152-D

6
4
48
1

---------
768-G
-------

6
4
32
1

1280-E
--------

12
5
21

1.016

832-A
-------

6
4
36

0.963

768-G
-------

4

1

6

32

1280-E
--------

10
4
32
1

7ii d

7V b

7II d

I   d7

Figure 1.21a Measures 1 to 8 of Prelude No.1 in C-major, from the Well-tempered Clavier by J. S. Bach, with
mutable base numbers and digit sequences appended below each chord.
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384-G
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9
2
21
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576-D
-------

**
40
14

1.029

C
U

T
 T

O
 B

A
R

 20

I 7

vi7 II 7

V

384-G
-------

4
4
24
1

-------
6
4
24
1

576-D
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1.0158...

12
5
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8
5
21

1.0158...

853.33...A 853.33...A
-----------

6
4
36

0.9876...

568.88...D
------------

4
4
36

0.9876...

384-G
------

6
4
16
1

568.88...D
------------

6
4
24

0.9876...

7IV dim7

dim7 V7

Figure 1.21b Measures 9 to 11 and 20 to 24 of Prelude No.1 in C-major, from the Well-tempered Clavier by
 J.S. Bach, with decimal numbers and mutable base digit sequences appended below each chord.
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CONCLUSIONS
A truly useful music theory should, hopefully, enlarge our understanding; shedding light both on the

intrinsic qualities of the music itself, and on its historic development. Additionally, if the theory also

aspires to be thoroughly fundamental and elemental in its description of the art, it will inevitably be

mathematical in character. Bearing these criteria in mind, the principal conclusions which may be drawn

from the identification of an integral number system embedded within tonal music are: 

1) The canon of tonal music is what composers, musicians and most importantly the audience have

selected over generations. To a considerable extent this body of music can be viewed as an external

manifestation of inner aural and mental processes. Indeed, the very pattern of nerve pulse encoding in the

auditory pathway recorded by investigators (Rose8 et al 1967, Kiang9 1969, as given by Beament10) is

analogous to the scheme of mutable numbers, considered as a meta-level re-implementation, in that the

frequency value  being signalled, is the lowest common multiple of the actual extant nerve impulses. This

algorithm of the hearing mechanism, transferred to tonal music interpreted in terms of mutable numbers,

would map these lowest common multiples of nerve impulses to conjunctions – the mutable number value

– and nerve impulse streams to notes (pitch-frequency).

As there is nothing more ordered than a number system, and as the fundamental structures of tonal

harmony reveal themselves to form such a system, music making and listening may ultimately be

interpreted as a source of low entropy organisation, made available to human beings in a form digestible

by the processes of aural cognition – nourishment for the mind, and depending on your point of view,

perhaps also the soul.

2) The history of the tonal era may be redrawn in terms of the powerful attraction of this source of

low entropy: its gradual discovery, its long zenith from Corelli to Schubert, its decline and eventual

rejection by many composers toward the end of the nineteenth century... Wagner to Schoenberg. However,

as the composers of the new art music moved away from mutable numbers in their compositions, so the

vast majority of the audience, many musicians and some composers deserted the avant-garde in favor of

the historic repertoire and style – beginning with the Mendelssohnian revival of Bach in the mid-

nineteenth century. From about the same time, popular domestic and commercial music making grew

exponentially; the household piano, brass/military bands, choirs, jazz, vaudeville, etc. began to fill the

void also, though often with rather more humble tonal offerings. In more recent years, after a century of

turbulent experimentation, classical art music is showing some signs of a return to the tonal fold.

3) Approached from the view of a number system embedded within tonal harmony, the music of

common practice may be construed as a form of computation. In digital electronic computers a formal

number system (binary numbers) is united with a physical representation of digits as two levels of

electrical potential – ‘on’ and ‘off’ representing one and zero. Similarly, formal mutable numbers meet

their physical representation in sounding tonal music. A music score may thus be interpreted, in principle,

as a stored program: software which runs upon the hardware architecture provided by the particular

circumstances of each musical performance. (An overt example is given in Chapter 13 and Example R,

where the logic sequence of a computer program written in the BASIC language is reinterpreted in

mutable base numbers as a tonal composition, a piece for violin and piano: The Divisors of Seventy-two.)
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4) In view of the elemental nature and neutral quality of mutable base numbers, as well as providing

a mathematical underpinning to standard Roman numeral analysis, the MOS model offers the prospect of

fruitful combination, or perhaps even integration, with other theoretical systems; in particular, those

approaches that stress the dynamic and organic aspects of tonal music, for example, Schenkerian analysis.

--------------------------------

Commentary
There is, potentially, a great deal going on under the surface in tonally organised music. Indeed, the

written notes of a composition are perhaps just the visible tip of an iceberg of aural relationships and

cognitive processes. Through the broader context of the modulating oscillatory systems model of nested

harmonic series, the objective chords of tonal compositions and different metrical proportions may be

connected together and interpreted as being (parts of) mutable number digit sequences, written in explicit,

and in places implicit, frequency relationships. However, great care is required: In the late nineteenth

century a number of music theorists were lead into difficulties pursuing theories about sub-harmonics or

‘undertones’ which proved to be contrary to experience and acoustics. The wider context of mutable

numbers, the submerged body of the iceberg, if it has existence beyond that of a formalism applied to

scores, it is to be found within the mechanisms of the human ear and mind. This is largely an uncharted

ocean, particularly the higher levels of cognition, which hopefully one day will be laid bare. Until that

time firmly grounded fact yields to hazy speculation. However, a significant point to note is that the

interpretation of tonal music provided by the MOS model requires only that the ear apprehends a

conjunction tone lying well within the range of normal hearing. The aural perception of this ‘still center’
(either note or low order harmonic) connecting adjacent chords is sufficient; the ‘deep tail’ of the mutable

base numbers is implied by this conjunction frequency, though perhaps never explicitly deciphered by

aural cognition. Yet undeniably, music in the tonal era largely developed through the agency of human

choice, made on the basis of what delights the ear and aural understanding. So it would appear, if the

mutable number approach proves to be valid and coincidence is discounted, that whatever else tonal

music may be, it is also an exercise in mathematics. Such a conclusion is perhaps not surprising given that

ratio, and generally simple ratios at that, form the foundation of the art. What is surprising though, is that

the nature of tonal music should be so precisely mathematical at its heart, that it produces the structure of

a positional number system: and one wonders what this intensely numerical character might imply for not

only aural cognition but the mechanisms and structures of the mind in general. This however, I must stress

is speculation, and should it turn out to be the case that mutable numbers have no connection at all with

the processes of aural cognition, the MOS idea simply falls back to what it essentially is and always has

been, a mathematical model applied to traditional tonal western music, and hopefully, still a useful

analytical tool.

--------------------------------

In Chapter 12 and Example S, Prelude No.1 from the first book of The Well-tempered Clavier is

analysed in full using mutable base numbers; and other example mutable number analyses are also given

in the EXAMPLES folder. Generally, sophisticated pieces and those of greater extent require larger

mutable numbers to encapsulate their complete harmony. Values in the range from three hundred to three

thousand, expressed as three-column (or more) mutable numbers, are typical.
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Historical Perspective
From an overview perspective of world music cultures, the development of western tonal music during

the four hundred years from 1500-1900, was atypical. Overall, music cultures throughout the world have

tended to evolve structural models based on a vibrant use of pitch and rhythmic elements, often associated

with ostinato motives and dance rhythms, creating semi-continuous textured heterophonic strands, over or

through which melodic features of song or chanting are interwoven. The melodic contours frequently

include expressive pitch inflection and microtonal intervals lying beyond the whole-numbered ratios of

diatonic harmony, as for example is used in classical Arabic or Indian musics. Typically, in the majority of

traditions, often complex rhythmic structures are worked out, in the foreground, yielding lively, engaging,

energetic music styles – exemplifying a close connection between physical movement, dance and musical

sound – as for example is found in many African cultures. Western art music was to develop along a

rather different path: with these foreground rhythmic complexities, perhaps one might even call them

‘computations of rhythm and meter’, being transferred, to a significant degree, to the rarefied frequency

level of harmonic progression. Fundamentally similar processes were at work in both areas – each equally

amenable to MOS/MBN analysis – only the frequency domains were completely different. The focus of

activity in the western tradition was sublimated from the frequency range of beats per minute to that of

cycles per second. In western music, as the 3:2 hemiola rhythmic proportion became an increasingly rare,

though still powerful device, the 3:4 pitch ratio of the dominant-tonic chord progression was to become

all pervasive. Of course, the differences are of degree and emphasis, not absolute or exclusive. However,

the atypical evolutionary route of western musical practice (engendered by the development of

polyphonic music) across a landscape of high frequency harmonic organization, was to open up a

significantly wider range of relational exchanges and transitions than it is possible to access at the coarser-

grained, low-frequency level of rhythm and meter. With these enhanced relational resources, western

musicians were, intuitively, to forge an extensive and logically consistent system of musical organization

– the tonal system. That this music system is also effectively a number system, is the burden of this

document.

In Summary:
1) chords, through extrapolation to related sets of nested harmonic series, form the digit sequences

of mutable base position-value numbers;

2) chord progressions are reconfigurations of mutable number digit sequences representing the one,

selfsame, value; and,

3) tonal compositions are successions of mutable numbers (i.e. digit sequences) which, in principle,

amount to number processing in sound.
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Notes
1. In contrast to the situation of music – poised between symbolic glyphs and material existence (written scores and
live performance) – mathematicians have not generally needed to give ‘physical utterance’ to their calculations and
proofs employing ‘abstract’ symbolic number systems (decimal, sexagesimal, duodecimal, binary, etc.) and so have
not been as constrained as musicians by physical restrictions in the range and types of their number processing.

2. Elements of Music?, Archive Nov.03 Vol.17.2 - June.05 Vol.18.9. Some of the ideas and concepts used in this
book were developed by studying objective physical systems (e.g. the periodic table of elements and the solar
system) from the perspective of musical/tonal principles of organisation. Though this approach proved fruitful and
illuminating, particularly in regard to the development of concepts and tools for the subsequent analysis of
underlying structure in tonal compositions, I must stress that the propositions outlined in the articles were of an
exploratory and highly speculative nature.

3. Webster’s and Oxford dictionaries define ‘digit’ as "a finger or a toe" and "any of the numbers from 0 to 9",
amongst other things. In this document both these meanings are adopted with the context determining which, or
indeed if both are intended; with the former definition extended to include "or a harmonic/partial/ratio of the
harmonic series". Thus the number formed by raising three fingers might be described as three digits, as similarly
might the three physical harmonic frequencies h1, 2, 3; both of which signify the same value as the one written digit
3. Though occasionally a little thought and care may be needed to distinguish one or other meaning, as often as
not, it is both the physical relationship of ‘real’ digits and the symbolic written digit that is being jointly referenced.

4. For a fuller account see: Barrow, J.D., The Book of Nothing (Vintage/Random House, London, 2001) and H.
Midonick, (Ed) The Treasury of Mathematics: 1, (Pelican Books, London, 1968) p249.

5. Midonick, H., (Ed) The Treasury of Mathematics: 1, (Pelican Books, London, 1968) p249.

6. Essentially mutable base numbers and the modulating oscillatory systems they represent, considered as a
general relational theory, are expressive of the two most fundamental characteristics of phenomena in the material
world, those of identity and events: what ‘things’ are and how ‘things’ change.

Hall, A.R., From Galileo to Newton (Wm. Collins 1963/Fontana, London, 1970) p33. "... Throughout the ages the
problem faced by natural philosophers has been, in broadest terms, the duality of identity and change. The whole
universe, the materials composing it, the events that occur in it, are in one sense always the same, in another
always different."

7. Lists of the number of arrangements (i.e. digit sequences) of mutable base numbers from 1 through 5000 and 1
through 20,000 can be found in the EXTRAS folder/directory: files 1-5000.TXT and 1-20K.TXT. The sequence of
most fecund numbers are marked in the lists. Interestingly the difference between any two adjacent fecund
numbers is also a fecund number.

8. Rose, J., Hind, J., Anderson, D., Brugge, J., Response of Auditory Fibers in the Squirrel Monkey. (Journal of
Neurophysiology 30, 1967)

9. Kiang, N.Y.S., Discharge Patterns of Single Auditory Fibers, (MIT Research Monograph 35, Cambridge MA,
1969)

10. Beament, J., How We Hear Music, (Boydell Press, Woodbridge, UK, 2005)
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