
COMPUTATION  WITH  MUTABLE  NUMBERS

Generally throughout these documents1, the argument is advanced that tonal music, stripped down to an

elemental structure founded upon nested harmonic series, forms an implicit sequence of values – mutable

base numbers – written in an acoustic physical notation.
In support of this contention, that chords in tonal music may be interpreted in essence as being

positional numbers written in sound (–i.e. may be construed as forming parts of much broader harmonic

series h1 through hn) a demonstration ‘composition’ or ‘tonal procedure’ is presented below, that performs

the overtly numerical task of finding the divisors of any given positive whole number. Judged on its merits,

in purely musical terms, the piece is trivial, consisting as it does of repetitive arpeggios and scale passages.

However, this procedure does result in a ‘composition’ of sorts which is both recognisably tonal music and

practical mathematics. The example given below seeks out the divisors of seventy-two, though equally the

procedure could be applied to any number that lies within the range of musical instruments, and in theory

could be applied to any positive whole number. Further below, the same sequence of chords is ‘repackaged’

in a rather more palatable form in the piece The Divisors of Seventy Two to demonstrate that this really is

tonal music. 

The numerical procedure embodied in this ‘composition’ is also given below in the parallel form of a

computer program. This program is written in the almost readable prose of the BASIC programming

language. This procedure/program requires a digital electronic computer to function. That is, a physical

device capable of handling positional binary numbers by means of representing the digits zero and one as the

absence or presence of a defined level of electrical potential within the computer’s circuitry. Going back in

time to the nineteenth century, the mathematician Charles Babbage designed somewhat similar devices: the

mechanical difference and analytical engines. Though never finished in their own day, these were likewise

physical devices, but machines that used cogwheels and cylinders to represent the digits of positional

decimal numbers – rather than binary numbers as in electronic computers or the mutable numbers used the

musical example below. Theoretically, there is little to distinguish between the modern computer and

Babbage’s engines, beside the technicalities of operation (and of course a huge speed differential).

Interestingly, Ada Lovelace the daughter of Lord Byron, who supported and collaborated with Babbage on

the project and is the author of the fullest account of the analytical engine’s true potential, suggested that

among other things the device might: “compose elaborate and scientific pieces of music”.
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Charles Babbage (1791–1871)  was born in London into a prosperous banking family with land holdings at
Teignmouth in Devon. Babbage was educated at home with tutors and at a variety of schools and private academies,
and in 1810 went up to Trinity College, Cambridge. At Cambridge he meet and became friends with many of the
coming generation of scholars and scientists such as John Herschel, the son of the great astronomer. With others of
this circle he founded the Analytical Society in 1812 and in the same year transferred to Peterhouse College were he



felt the teaching of mathematics was superior. Though a good scholar himself, he was to leave Cambridge with only an
honorary degree conferred without examination. His somewhat awkward academic career was to be a story oft
repeated throughout his life. Babbage was a man of proud character with a talent for alienating friends and colleagues;
he held on to, not to say nourished, differences and arguments with a rare passion. Ultimately, this trait would lead to
him failing to realise the great potential of his principal contribution: the development of serious mechanical
computation. The stimulus for this invention came from the difficulties encountered in producing reliably accurate
astronomical, navigational and mathematical tables by human hand. Babbage saw that the basic but mind-numbingly
repetitive arithmetic could be better done by machine, and he set about designing a device capable of performing such
a task: the difference engine. The history of mechanical calculation is long, going back to ancient methods of reckoning
involving fingers, pebbles, etc., devices such as the abacus, and many later inventions, through to work by Leibniz on
automated arithmetic – which Babbage had read at Cambridge. Building on this knowledge, Babbage came up with
the design of his difference engine, for which he was able to secure government funding. All looked well for the project
at first and much was made of his plans at the intellectual gatherings he regularly hosted at his London house. One
visitor was Augusta Ada Byron, daughter of the poet Lord Byron, a keen amateur mathematician. Indeed, Ada’s
mother, also a mathematician (a “Princess of Parallelograms” in Byron’s cutting put-down) encouraged her study in the
hope that it might counteract any inherited traits of her father’s character! Ada was fascinated by Babbage’s invention
and requested the plans for closer study. Though their relationship was never more than platonic, Babbage liked Ada,
helped her to further her mathematical studies and respected her for perceiving the true nature of his invention.
Perhaps crucially, being a woman she didn’t provoke or challenge his pride. Remarkably Ada probably grasped the
wider implications of Babbage’s engine more fully than he did himself, and she is now considered to be the first ever
computer programmer. Later, Ada, Countess of Lovelace was to render Babbage a great service by translating the
account of his more advanced analytical engine, which he gave to Italian mathematicians (having alienated most
English colleagues), adding substantial material of her own. It is this document above all which preserved Babbage’s
work, and nearly a century later, communicated it to Alan Turing the father of the modern electronic computer. Despite
all Ada’s enthusiastic interest and support, there were delays and eventually total failure in the construction of the
difference engine. This was partly due to domestic tragedies in Babbage’s life, ill health, a lack of focus on one single
design, and as always, personal animosities. However, Babbage did make contributions over a wide area of
engineering, science and mathematics; he held the post of Lucasian Professor of Mathematics at Cambridge from
1828 to 1839. Charles Babbage died in London on the 18th October, 1871.

 Similarly, in seeking to use positional mutable numbers as the basis of operation for computation, an

appropriate physical device is required, that is, a physical device specifically designed to match the particular

characteristics of its operational number system. For mutable numbers (–i.e. chords in tonal music) an

appropriate physical device is a musical instrument or ensemble, though one could imagine far more

powerful oscillatory processors, with frequency ranges and sensitivities far in excess of that required for the

pursuit of music. However, the instruments we have and use to make music are adequate for the

demonstration of tonal computation in sound. As indeed is exemplified in the performance of any piece from

the period of common practice.

First the mathematics. An underlying mechanism for finding the divisors of a given number is

described in Journey to the Heart of Music Chapter 7, in the section on bow waves in the Table of Harmonic

Series – or Sieve of Eratosthenes. (In regular mathematics it is called the difference of two squares.) There

the formula N = n2 − s2 was derived and described, for any odd number N. A slightly more complicated

formula was found for where N is an even number. However, a further development of the simpler odd-

number relationship, allows the inclusion of even numbers within a single algorithm. The best way of seeing

how this algorithm works is visually, by picturing the numbers as areas – that is squares and rectangles.

Figures 13.17 and 13.18 illustrate this extension of the N = n2 − s2 relationship from odd to even numbers

with two examples. The odd number N = 133 is examined first and then the even number N = 82.

Because the same ‘remainder’ relationship holds true for both odd and even numbers, with the two gray

leftover rectangles and one square (Figures 13.17–18) necessarily taking integer values when whole numbers

divide N (despite n and s themselves not always being whole numbers), this characteristic allows a simple

algorithm to be devised: whenever a perfect whole numbered square (–i.e. gray square below), equal to or
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less than the given number ‘N’, is subtracted from ‘area N’, leaving over two rectangular areas; then, two

whole numbered divisors of N will be: The root of that perfect (gray) square, and the sum of that root, plus

the area of the two rectangles divided by that root (–i.e. the sum of the non-root sides of the rectangles).

<-------------------------------- n = 13 --------------------------------->

<------------ s = 6 ----------->
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49 + 42 + 42 = 133

169 – 36 = 133

Figure 13.17  Number = 133. By subtracting s2 from n2 the number N is deduced (–i.e. 13 x 13 minus 6 x 6 = 133).
Looking at the squares of n and s, superimposed, reveals that N 133 (the gray area) is composed of the square 49,
plus two identical rectangles, thus 7 x 7 + 42 + 42 = 133. The gray area may be combined into one rectangle 7 × 19.

Therefore the divisors of 133 are 7 and 19.
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462.25 – 380.25 = 82

4 + 39 + 39 = 82

Figure 13.18  Number = 82. The same relationship as illustrated in Figure 13.17, holds true for even numbers too, in
spite of n and s being fractional: 21.5 x 21.5 minus 19.5 x 19.5 equals 82. The imposition of s2 upon n2 again reveals
another square and two identical rectangles: 2 x 2 + 39 + 39 = 82 which may be combined into the rectangle shown in

Figure 13.19. Therefore divisors are 2 and 41 (i.e. 2 + (39 + 39)/2).

<
- 

2 
->

<----------------------------- s = 19.5 --------------------------><- 2 -><----------------------------- s = 19.5 -------------------------->

Figure 13.19  Rotating one leftover rectangle perhaps makes things clearer: area N = 82 = 2 x (19.5 + 2 + 19.5)
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Thus when presented with any number ‘N’ for which one wishes to find the divisors, first calculate the

largest perfect square equal to or less than N and then proceed in whole numbered steps downward from this

square, testing each descending square in turn against the algorithm. Whenever the procedure produces an

integer result for the ‘leftover’ square and rectangles, two divisors of N have been found. Essentially, the

algorithm anchors the largest (gray) perfect square that will fit within ‘area N’, in N’s bottom right corner,

and sequentially compresses this (gray) square, in whole number steps, to one.

In the BASIC programming language (BBC Basic V) this procedure could be written out as three steps:

First, acquire the number to be divided; second, find the largest perfect square that is less than or equal to it;

and third, check each perfect square from this largest down to the unit square, in integer steps, for leftover

rectangles with whole number areas. Whenever the result meets this criterion, print out the whole numbered

divisors found.

  REMARK delineate number, for example 72.
  PRINT "Please specify whole number to be divided"'
  INPUT note_number

  REMARK Loop 1. find largest perfect square equal to or less than note_number.
  sqrt = 0
  REPEAT
    sqrt = sqrt + 1
    square = sqrt * sqrt
  UNTIL square >= note_number
  IF square > note_number THEN sqrt = sqrt - 1

  REMARK Loop 2. work down from value of sqrt to 1 in whole steps.
  WHILE sqrt >= 1
    square = sqrt * sqrt
    difference = note_number - square
    result = difference / sqrt
    REM test if result is a whole number.
    IF result = INT(result) THEN
      divisor_1 = sqrt
      divisor_2 = sqrt + result
      PRINT "Divisors: "; divisor_1; " x "; divisor_2
    ENDIF
    sqrt = sqrt - 1
  ENDWHILE
  END

Applying the selfsame procedure as given in the above BASIC program, but using mutable base

numbers operating upon the ‘physical devices’ that we call musical instruments (and writing out the progress

through each loop exhaustively, thus labelled Loop 1.1, Loop1.2, etc...), produces the score given in

Example R for the input number seventy-two. Below the first three pages are reproduced for quick reference.

The score requires microtonal notes to be played in the upper part (violin), indicated by small arrows above

the notes where one staff note covers a range of two or four harmonics. For example, the written top C may

stand in for four frequency inflections: C-h64, C-h65, C-h66 and C-h67.

Notes
1. This document has been extracted from Chapter 13 of Journey to the Heart of Music, thus the Figure numbering
and references. 
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11

19

Violin

Piano

An Explicit Demonstration of Tonal Computation in Mutable Base Numbers

Tempo ad lib.

C-h1 fundamental tone

REMARK delineate number, for example: C-h1 through D-h72

h1 h4
h8

h12

h16

[Where more than one harmonic of the fundamental tone C-h1 is represented by a single note,

The arrow symbol indicates roughly an eighth-tone, quarter-tone or three eighth-tones as appropriate.]  

h20 h24 h28 h32 h36 h40 h44 h48

· ·

h52 h56 h60 h64 h68

D-h72 number to be divided

h72

e.g. Fh22 and Fh23 above, arrows (    )  are used to distinguish between them.
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29

41

54

(Loop 1.1)

REMARK Loop 1. Find largest square number equal to or less than D-h72

1 squared

1 < 72

(Loop 1.2)

2 squared

4 < 72

(Loop 1.3)

3 squared

9 < 72
(Loop 1.4)

4 squared

16 < 72

(Loop 1.5)

5 squared

25 < 72

(Loop 1.6)

6 squared

36 < 72

(Loop 1.7)

7 squared

49 < 72

(Loop 1.8)

8 squared
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:
:
<

9 W W W W W W W. W W W
9 W 9

WWW WW WW WWW WWW ) 6 W W W WWW W W W WWW 9
W. W W W. W W W W W W W W

9
W

9
u

ß ß

66

79

88

64 < 72

(Loop 1.9)

9 squared

81 > 72

9 squared, E-h81 is greater than D-h72

81 > 72

therefore 8 squared is largest
square number equal to or
less than D-h72

64 < 72 64 < 72
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98

109

122

REMARK Loop 2. Check each square number in descending order from C-h64
for the concordance which signals whole number divisors.

(Loop 2.1)

C-h8 squared = C-h64

D-h72 minus C-h64 = 8 harmonics

By removing the bottom tier harmonic series division is achieved,
here division by eight leaves C-h1 of the second tier nested series.

C-h8 divided by C-h8 = 1, therefore (8+1) multiplied by 8 = 72

C-h1

Equality
(Loop 2.2)

A h7 squared = Gh49

h72

D-h72 minus Gh49 = 23 harmonics

h68 h64 h60 h56 h52 h50

* Repeat ad lib. with crescendo and allargando.

–i.e. Decimal  8 ÷ 8 = 1

MBN 1801 ÷ 1801 = 11
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:
:
<

133

00
00
00

00
00
00

:
:
<

144

:
:
<

154

9 9 9 9 9 9 W. 9 9 9 9

9 9 9 9 9 9 9 W W W W W. W W W W/ W W W

W W W W W. W W W W/ W W. W W/ W W W W. W W/ W W W W. W W/ , 5 6 W W W L

9 9 9 6 W. ) W. W W. W. W/ 9 9 9 9

9 9 9 9 W W W W W W W W W W W W

W W W W W W W W W W W W W, 5 6 W W W L

W W W W W W W. 9 9 9 W. W W W W W W

9
W W W W W W W+ 6 9 9 9 9 9

9 9 9 9 9 9 9 9

[

F#h23 divided by A#h7 = non-integer value between 3 and 4, therefore no divisors

A#h4
 F-h3

Inequality
*

F#h3.285...

u

[

(Loop 2.3)

G-h6 squared = D-h36

u

h72

D-h72 minus D-h36 = 36 harmonics´ ´ ´
h68

´ ´ ´
h64

´ ´ ´ß

h60

* Repeat ad lib. with crescendo and allargando.

´ ´ ´
h56

´ ´ ´
h52

´ ´
h48

´ ´ ´
h44

´ ´
h40

´ ´
h36

(ß)

MBN (3701 + 21) ÷ 1701 = 31 7  (i.e. 21 × 01 7 = 01 7)2 1 2

Decimal  ( 21 + 2 )   ÷   7   =  3.285714286...
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162

173

183

D-h36 divided by G-h6 = 6, therefore (6+6) multiplied by 6 =72

D-h6

Equality

E-h5 squared = G

(Loop 2.4) h72

D-h72 minus Gh25 = 47 harmonics

h68 h64 h60 h56

h52

* Repeat ad lib. with crescendo and allargando.

h48 h44 h40 h36 h32 h28 h25

MBN 6601 ÷ 1601 = 61
Decimal  36   ÷   6   =  6
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191

204

214

G-h47 divided by E-h5 = non-integer value between 9 and 10, therefore no whole number divisors

G h10
 F h9

Inequality

G-h9.4

(Loop 2.5)

C-h4 squared = C-h16

h72

D-h72 minus C-h16 = 56 harmonics

h68 h64 h60 h56

h52

* Repeat ad lib. with crescendo and allargando.

h48 h44 h40 h36 h32 h28 h24

Decimal  ( 45 + 2 ) ÷ 5  =  9.4

MBN (9501 + 21) ÷ 1501 = 9125  (i.e. 21 × 0115 = 0125)

COMPUTATION  WITH  MUTABLE  NUMBERS 11



222

234

244

A h56 divided by C-h4 = 14, therefore (14+4) multiplied by 4 = 72

A h14

Equality

(Loop 2.6)

G-h3 squared = D-h9

h72

D-h72 minus D-h9 = 63 harmonics

h68 h64 h60

h56

* Repeat ad lib. with crescendo and allargando.

h52 h48 h44 h40 h36 h32 h28

MBN 14401 ÷ 1401 = 141
Decimal  56   ÷   4    =  14
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252

262

273

h24 h20 h16 h12 h9

C-h63 divided by G-h3 = 21, therefore (21+3) multiplied by 3 = 72

Equality

C-h21

C-h2 squared = C-h4

(Loop 2.7) h72

D-h72 minus C-h4 = 68 harmonics

h68 h64

* Repeat ad lib. with crescendo and allargando.

h60 h56 h52 h48

MBN 21301 ÷ 1301 = 211
Decimal  63   ÷   3    =  21
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282

290

302

h44 h40 h36 h32 h28 h24 h20 h16

h12 h8

h4

* Repeat ad lib. with crescendo and allargando.

h68 divided by C-h2 = 34, therefore (34+2) multiplied by 2 = 72

Equality

MBN 34201 ÷ 1201 = 341
Decimal  68   ÷   2    =  34
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323

:
<
<

331

:
W W W W W h 9 9 9 9 9 9 9 6 W+

W
W W.

W
W W

W
W W W
+ 6 W W W W h

9 9 9 9 W W W W. W W W. W
9 9 9

W W W W W W W. W+ 6 9 9 9

C-h1 squared = C-h1

(Loop 2.8)h72 h68 h64

D-h72 minus C-h1 = 71 harmonics

h60 h56 h52 h48 h44

h40 h36 h32 h28 h24 h20 h16 h12

h8

h4

h1

[
h1 h2

h1

h4 h6

h8 h10 h12 h14
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342

355

364

(accel. poco e poco)

h16 h18 h20 h22 h24 h26 h28 h30 h32 h34 h36 h38 h40

h42 h44 h48 h50 h52 h56

D-h71 divided by C-h1 = 71, therefore (71+1) multiplied by 1 = 72

C h71

Equality

(allargando)

h60 h64 h68 h71

of a tone may be obtained by retuning down the unused D above.) 
* Repeat ad lib. with crescendo and allargando. (The piano note C plus three eighths
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Treble/
Sopranino

Bass Rec. I

Bass Rec.II

poco accel.

For Two Bass Recorders (with F# keys) and Treble or Sopranino

The Divisors of Seventy Two

In ‘Journey to the Heart of Music’ Chapter 13, an example of computational number processing is provided
both in the form of computer code and tonal sound. The music below is an attempt to illustrate that the ‘dry’
chord progressions of this rather theoretical example could be incorporated in to a piece of normal common
practice tonal music: thereby exemplifying the contention, that all tonal music is, fundamentally, arithmetic.

«

Andantino

«
«

«

«
«

«

«
«

Rosebay Music Archive No.530
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Rosebay Music Archive No.530
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« «

molto rit.

«
«
«

The Cmaj-9th chord in the key of C major
expresses the relationship of C-h1 to D-h72.

«
«
«

accel.

poco meno Tempo primo

Loop:1.1-C 1.2-Cmaj 1.3-Gmaj 1.4-Cmaj

«

1.5-Emaj

«

1.6-Gmaj 1.7-Bbmaj7th
Rosebay Music Archive No.530
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1.8-Cmaj7th

allargando

«

(E-h81 > D-h72)
1.9-Dmaj9th, Therefore C-h64 is greatest square less than D-h72

molto allargando

«
«
«

accel.

«
« « Tempo primo

«

« «

Rosebay Music Archive No.530

20



=

>
=

>
=

>
=

>

: -
ä -
ä -

89 /
/
/

:
ä
ä

95

:
ä
ä

101

:
ä
ä

107 .
.
.

! W ! W/ !/ W !/ W W W W W !

W ! W ! W W W W W W ! W ! 0

! 0 ! 0 ! 0 ! 0 W W W ! W

W W W W W W W W W W W W ! ! W W !

W W W W W W W. W W W W W W/ W W W W W W W ! W W 0 W W W

W 0 W W W W 0 W W W W W W W W. W W W W 0 W W W W 0 W W W

! W W 0 W W W W W W W W W W W W W W 0 W + W W W W

W 0 W+ W ! 0 8 W W 0 W W W W 0 W W W W W W W

W 0 W/ ) W W 0 W ) W W W/ W W ! ! 0 ! 0

! 0 ! 0 W W W W W W W W ! W W W

W W W W ! W ! W ! W W W W W W

! W W W W W. W W ! W W ! ! W

rit. « poco meno

« � «

«

«
«

«
«

«
Rosebay Music Archive No.530

21



=

>
=

>
=

>
=

>

: .
ä .
ä .

113

: .
ä .
ä .

119

: .
ä .
ä .

124 /
/
/

:
ä
ä

131

! 0 ! W W W W W W W W W W W W !

! W W ! ! W W W W W ! W

W W W W W W W W W ! W W ! ! 0 !- W- W !/

W ! ! W ! W ! 0 ! 0 ! 0 ! 0

W W W W 0 W W W W ! W W W W W W W 0 W W W

W W W W W W W 0 W W W W W W W W W W W W W W W W W W 2

W W W ! W ! W W- ! W 0 W W- W- ! W- ! W

W ! !. W ! W ! W W W W W W W 0 W W W W 0 W W W

W W W W ! W W W W ! W W W W W W

W ! W W W W W W W W W W W W W

W W W W W W ! 0 ! W- W !- W !- ! 0

W ! ! W. ! 0 W ! W ! W ! W !

«
«

«
«
«

«

«
«

«
«

«
«

«

Loop:2.1-C7th 2.2-Bb7th 2.3-Gmaj

«

2.4-Emaj 2.5-Cmaj 2.6-Gmaj

�«

Rosebay Music Archive No.530

22



=

>
=

>
=

>
=

>

:
ä
ä

138 .
.
.

: .
ä .
ä .

144

: .
ä .
ä .

149

: .
ä .
ä .

154

! W. W W W ! W W W W W W W ! W

! W ! W ! W ! W W 0 W ) W

! 0 W W W W 0 W W W W W W W W W W 0 W W W

W W W W W W W ! W ! W W W 2 ! 4 0

! W W W W W 0 W+ W ! 0 8 W W W W

W W W W W W W W W W W W W W W W W W W W W W W W

W W W W W W W W W W W W W W W W W W W W W W W

W W W W W W W W W W W W W W W W W 22 W 3 ! 4

W ! W W W ! W W W W W W W W W W W W W

W W W W W W W W W W W W W ! 0 ! 0

W W W W W W ! W ! W ! W

! W ! W W ! W W W W W 2 ! 4 0

«

2.7-Cmaj 2.8-Cmaj

« meno

Thus the divisors of seventy-two are:
8×9, 6×12, 4×18, 3×24, 2×36 & 1×72.
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